• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

波形钢腹板梁焊接残余应力分布及试验验证

冀伟 刘勇

冀伟, 刘勇. 波形钢腹板梁焊接残余应力分布及试验验证[J]. 西南交通大学学报, 2024, 59(2): 289-297. doi: 10.3969/j.issn.0258-2724.20220054
引用本文: 冀伟, 刘勇. 波形钢腹板梁焊接残余应力分布及试验验证[J]. 西南交通大学学报, 2024, 59(2): 289-297. doi: 10.3969/j.issn.0258-2724.20220054
JI Wei, LIU Yong. Welding Residual Stress Distribution and Experimental Verification of Corrugated Steel Web Girders[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 289-297. doi: 10.3969/j.issn.0258-2724.20220054
Citation: JI Wei, LIU Yong. Welding Residual Stress Distribution and Experimental Verification of Corrugated Steel Web Girders[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 289-297. doi: 10.3969/j.issn.0258-2724.20220054

波形钢腹板梁焊接残余应力分布及试验验证

doi: 10.3969/j.issn.0258-2724.20220054
基金项目: 国家自然科学基金(52168019,51868039);甘肃省重点研发计划(23YFGA0043);中央高校基本科研项目(541109030099)
详细信息
    作者简介:

    冀伟(1982—),男,教授,博士,研究方向为组合箱梁桥设计理论,E-mail:jiwei1668@163.com

  • 中图分类号: U441.5

Welding Residual Stress Distribution and Experimental Verification of Corrugated Steel Web Girders

  • 摘要:

    为研究波形钢腹板梁焊接残余应力的分布规律,通过有限元软件建立其三维热弹塑性模型,利用热-力耦合分析技术对其焊接温度场和应力场进行有限元数值仿真,采用双椭球体热源和修改单元材料属性的方法实现能量输入和焊缝填充,并将模拟计算结果与实测值进行对比分析. 结果表明:有限元预测的波形钢腹板梁残余应力分布与实测结果具有相同趋势,在波形钢腹板梁焊缝的弯折角处,残余应力发生一定幅度的连续应力波动;底板和腹板的残余应力峰值均出现在焊缝中心区域,其值分别为材料屈服强度的1.30倍和1.26倍;底板纵向残余拉应力在焊缝中心线两侧78 mm范围内急速下降后缓慢过渡为压应力,在底板较窄一侧压应力线性增大,最大值约为材料屈服强度的0.61倍;在底板较宽一侧压应力线性减小,并在边缘处转化为拉应力;焊接速度对残余应力分布扰动不大,而对残余应力峰值影响较显著;当焊接速度从150 mm/min增加至250 mm/min时,横向和纵向的残余应力最大值分别增加了27.11%和5.88%.

     

  • 图 1  波形钢腹板梁的几何尺寸

    Figure 1.  Geometric dimensions of corrugated steel web girder

    图 2  有限元模型网格划分

    Figure 2.  Meshing of finite element model

    图 3  S355J2G3钢热物理属性

    Figure 3.  Thermophysical properties of S355J2G3 steel

    图 4  S355J2G3钢力学属性

    Figure 4.  Mechanical properties of S355J2G3 steel

    图 5  双椭球热源模型

    Figure 5.  Double ellipsoidal heat source model

    图 6  温度场变化云图

    Figure 6.  Change nephogram of temperature field

    图 7  距离焊缝不同距离的温度历程曲线

    Figure 7.  Temperature change curves at different distances from the weld

    图 8  位移边界条件

    Figure 8.  Displacement boundary condition

    图 9  焊缝处的残余应力分布

    Figure 9.  Residual stress distribution at the weld

    图 10  底板处的残余应力分布

    Figure 10.  Residual stress distribution at the bottom plate

    图 11  腹板处的残余应力分布

    Figure 11.  Residual stress distribution at the web

    图 12  应变片布置(单位:cm)

    Figure 12.  Arrangement of strain gauges (unit: cm)

    图 13  残余应力实测值与理论计算值的比较

    Figure 13.  Comparison between measured and theoretically calculated values of residual stress

    图 14  在不同焊接速度下的残余应力

    Figure 14.  Residual stress at different welding speeds

    表  1  焊件残余应力合力分析

    Table  1.   Composition of residual stress on welding section kN

    位置 拉应力合力 压应力合力 小计 合计
    底板 上(外)侧 220.6 −201.9 18.7
    下(内)侧 186.6 −176.5 10.1
    平均 203.6 −189.2 14.4
    腹板 上(外)侧 90.1 −104.6 −14.5 4.2
    下(内)侧 67.3 −80.2 −12.9 −2.8
    平均 78.7 −92.4 −13.7 0.7
    下载: 导出CSV
  • [1] 卫星,邹修兴,姜苏,等. 正交异性钢桥面肋—板焊接残余应力的数值模拟[J]. 桥梁建设,2014,44(4): 27-33.

    WEI Xing, ZOU Xiuxing, JIANG Su, et al. Numerical simulation of residual stress in rib-to-top plate welding of orthotropic steel bridge deck[J]. Bridge Construction, 2014, 44(4): 27-33.
    [2] WANG Y B, LI G Q, CHEN S W. The assessment of residual stresses in welded high strength steel box sections[J]. Journal of Constructional Steel Research, 2012, 76: 93-99. doi: 10.1016/j.jcsr.2012.03.025
    [3] 丁阳,郭鹏. 高强钢焊接工字梁整体稳定性能分析[J]. 建筑结构,2015,45(21): 25-29.

    DING Yang, GUO Peng. Investigation on overall buckling behavior of high strength steel welded I-beams[J]. Building Structure, 2015, 45(21): 25-29.
    [4] PASTERNAK H, LAUNET B, KRAUSCHE T. Welding of girders with thick plates-fabrication, measurement and simulation[J]. Journal of Constructional Steel Research, 2015, 115: 407-416. doi: 10.1016/j.jcsr.2015.08.037
    [5] 于海丰,周建伟,张岩,等. 小截面焊接工字钢残余应力分布试验研究[J]. 建筑结构学报,2016,37(增1): 388-392,398.

    YU Haifeng, ZHOU Jianwei, ZHANG Yan, et al. Experimental study on residual stresses distribution on small welded I-shaped section[J]. Journal of Building Structures, 2016, 37(S1): 388-392,398.
    [6] KUBO M, WATANABE K. Residual stress measurement of corrugated steel web sections[J]. Journal of Japan Society of Civil Engineers, 2017, 73: 248-258.
    [7] KOLLÁR D, KOVESDI B. Welding simulation of corrugated web girders—part 1: effect of manufacturing on residual stresses and imperfections[J]. Thin-Walled Structures, 2020, 146: 462-477.
    [8] 王会利,王犇,谢常领,等. 钢桥面板U肋焊接残余应力影响因素分析[J]. 世界桥梁,2019,47(1): 53-58. doi: 10.3969/j.issn.1671-7767.2019.01.011

    WANG Huili, WANG Ben, XIE Changling, et al. Analysis of factors influencing welding residual stresses in U ribs of steel deck plate[J]. World Bridges, 2019, 47(1): 53-58. doi: 10.3969/j.issn.1671-7767.2019.01.011
    [9] 曹宝雅,丁幼亮. 板件厚度对钢桥面板顶板纵肋焊接残余应力的影响分析[J]. 东南大学学报(自然科学版),2016,46(3): 565-571.

    CAO Baoya, DING Youliang. Influence analysis of plate thickness on welding residual of steel deck deck-rib[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 565-571.
    [10] HU M J, LI K J, CAI Z P, et al. A new weld material model used in welding analysis of narrow gap thick-walled welded rotor[J]. Journal of Manufacturing Processes, 2018, 34: 614-624. doi: 10.1016/j.jmapro.2018.06.036
    [11] 张建勋, 刘川. 焊接应力变形有限元计算及其工程应用[M]. 北京: 科学出版社, 2017.
    [12] DENG D, MURAKAWA H. Prediction of welding distortion and residual stress in a thin plate butt-welded joint[J]. Computational Materials Science, 2008, 43(2): 353-365. doi: 10.1016/j.commatsci.2007.12.006
    [13] 顾颖. U肋加劲钢桥面板焊接残余应力与变形研究[D]. 成都: 西南交通大学, 2016.
    [14] QIANG B, LI Y D, YAO C R, et al. Through-thickness welding residual stress and its effect on stress intensity factors for semi-elliptical surface cracks in a butt-welded steel plate[J]. Engineering Fracture Mechanics, 2018, 193: 17-31. doi: 10.1016/j.engfracmech.2018.02.016
    [15] 周灿丰,陈智,焦向东,等. API X65管道深水铺设GMAW横向焊接温度场[J]. 焊接学报,2020,41(9): 60-68,100.

    ZHOU Canfeng, CHEN Zhi, JIAO Xiangdong, et al. Study on temperature field of GMAW horizontal welding for deep water laying of API X65 pipe[J]. Transactions of the China Welding Institution, 2020, 41(9): 60-68,100.
    [16] 秦荣. 大跨度桥梁结构[M]. 北京: 科学出版社, 2008.
    [17] 赵秋,吴冲. U肋加劲板焊接残余应力数值模拟分析[J]. 工程力学,2012,29(8): 262-268.

    ZHAO Qiu, WU Chong. Numerical analysis of welding residual stress of U-rib stiffened plate[J]. Engineering Mechanics, 2012, 29(8): 262-268.
    [18] 强斌,李亚东,顾颖,等. 钢桥对接焊缝残余应力及变形场数值分析与试验验证[J]. 铁道学报,2017,39(9): 134-139. doi: 10.3969/j.issn.1001-8360.2017.09.019

    QIANG Bin, LI Yadong, GU Ying, et al. Numerical analysis and experimental verification on welding residual stress and deformation of butt weld plate for steel bridge[J]. Journal of the China Railway Society, 2017, 39(9): 134-139. doi: 10.3969/j.issn.1001-8360.2017.09.019
    [19] 李琴,王于豪,丁雅萍,等. 焊接工艺参数对Q345钢平板焊接残余应力的影响[J]. 材料科学与工艺,2020,28(6): 80-87.

    LI Qin, WANG Yuhao, DING Yaping, et al. Effect of welding parameters on residual stress of Q345 steel plate welding[J]. Materials Science and Technology, 2020, 28(6): 80-87.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  91
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-18
  • 修回日期:  2022-04-18
  • 网络出版日期:  2023-11-10
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回