• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

荷载和氯盐环境下RC梁非均匀锈蚀与承载力劣化试验

赖骏 蔡健 左志亮 冯怿年

赖骏, 蔡健, 左志亮, 冯怿年. 荷载和氯盐环境下RC梁非均匀锈蚀与承载力劣化试验[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220038
引用本文: 赖骏, 蔡健, 左志亮, 冯怿年. 荷载和氯盐环境下RC梁非均匀锈蚀与承载力劣化试验[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20220038
LAI Jun, CAI Jian, ZUO Zhiliang, FENG Yinian. Non-uniform Corrosion and Load Bearing Capacity Deterioration Tests of Reinforced Concrete Beams Under Load and Chloride Salt Environment[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220038
Citation: LAI Jun, CAI Jian, ZUO Zhiliang, FENG Yinian. Non-uniform Corrosion and Load Bearing Capacity Deterioration Tests of Reinforced Concrete Beams Under Load and Chloride Salt Environment[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20220038

荷载和氯盐环境下RC梁非均匀锈蚀与承载力劣化试验

doi: 10.3969/j.issn.0258-2724.20220038
基金项目: 国家自然科学基金项目(51578246)
详细信息
    作者简介:

    赖骏(1990—),男,博士研究生,研究方向为结构在氯盐环境下的力学性能研究,E-mail:201510101120@mail.scut.edu.cn

    通讯作者:

    左志亮(1982—),男,博士,副教授,研究方向为混凝土结构理论研究,E-mail:ctzlzuo@scut.edu.cn

  • 中图分类号: TU375.1

Non-uniform Corrosion and Load Bearing Capacity Deterioration Tests of Reinforced Concrete Beams Under Load and Chloride Salt Environment

  • 摘要:

    为考察持续荷载与氯盐干湿循环共同作用对钢筋混凝土梁抗弯性能的影响,先后进行19根钢筋混凝土梁的腐蚀试验和抗弯承载力试验,研究不同持续荷载等级和干湿循环天数对裂缝分布、钢筋质量锈蚀率以及受腐蚀构件受弯性能的影响,并分别总结纵筋最大和平均质量锈蚀率与承载力降低比的关系. 研究结果表明:纯弯段的钢筋锈蚀程度较高,纵筋锈蚀程度沿圆周分布不均匀;纵筋质量锈蚀率的极值点位置与初始横向裂缝的出现位置无必然关联性;纵筋最大质量锈蚀率随荷载等级和干湿循环天数的增加而增大,受干湿循环天数的影响更明显;腐蚀后梁峰值荷载呈下降趋势;当纵筋锈蚀率较小时(平均值<3%或最大值<6%),锈蚀率与承载力降低比的相关度较低,且最大质量锈蚀率的相关度小于平均质量锈蚀率;当纵筋锈蚀率较大时(平均值>3%或最大值>6%),质量锈蚀率与承载力降低比的相关度提高;在纵筋平均质量锈蚀率相同时,采用自然腐蚀试件的承载力降低程度高于采用外加电流腐蚀的试件.

     

  • 图 1  试件梁配筋

    Figure 1.  Reinforcement layout of sample beam

    图 2  持续荷载加载装置

    Figure 2.  Device for applying sustained load

    图 3  试件在氯离子环境下的干湿循环过程

    Figure 3.  Drying-wetting process of specimens under chloride environment

    图 4  锈蚀梁受拉面的锈蚀特征

    Figure 4.  Corrosion characteristics of tensile surface of corroded beam

    图 5  试件 A8 箍筋的质量锈蚀率

    Figure 5.  Mass corrosion rate of stirrups of A8

    图 6  典型的纵筋锈蚀模式

    Figure 6.  Typical corrosion mode of longitudinal reinforcements

    图 7  受拉纵筋的质量锈蚀率

    Figure 7.  Mass corrosion rate of tensile longitudinal reinforcements

    图 8  A 组试件受拉纵筋最大质量锈蚀率

    Figure 8.  Maximum mass corrosion rate of tensile longitudinal reinforcements of group A specimens

    图 9  试件 B3 破坏形态

    Figure 9.  Failure mode of specimen B3

    图 10  腐蚀后梁跨中荷载-挠度关系曲线

    注:O1/0d/0%表示试件O1的参数,干湿循环天数0天,承受荷载比0%.

    Figure 10.  Load-displacement relationship at mid-span of corroded beams

    图 11  承载力降低比与纵筋质量锈蚀率关系

    Figure 11.  Relationship between reduction ratio of bearing capacity and mass corrosion rate of longitudinal reinforcements

    图 12  承载力降低比与纵筋平均质量锈蚀率关系

    Figure 12.  Relationship between reduction ratio of bearing capacity and average mass corrosion rate of longitudinal reinforcements

    表  1  试件参数

    Table  1.   Specimen parameters

    试件 荷载比(P/Pu)/% 干湿循环天数/d 加载方式
    O1 0 0 不加载
    A1 0 182 不加载
    A2 23.7 182 与 B2 互锚
    A3 37.6 182 与 B3 互锚
    A4 0 364 不加载
    A5 23.7 364 与 B5 互锚
    A6 37.6 364 与 B6 互锚
    A7 0 546 不加载
    A8 23.7 546 与 B8 互锚
    A9 37.6 546 与 B9 互锚
    B1 0 182 不加载
    B2 23.7 182 与 A2 互锚
    B3 37.6 182 与 A3 互锚
    B4 0 364 不加载
    B5 23.7 364 与 A5 互锚
    B6 37.6 364 与 A6 互锚
    B7 0 546 不加载
    B8 23.7 546 与 A8 互锚
    B9 37.6 546 与 A9 互锚
    下载: 导出CSV

    表  2  混凝土组成成分

    Table  2.   Concrete composition kg/m3

    成分 水泥 天然江砂 粗骨料
    配合比 455 185 755 1465
    下载: 导出CSV

    表  3  材料力学指标

    Table  3.   Material mechanical indexes MPa

    钢筋类型 屈服强度 极限强度
    HPB300 308.2 484.9
    HRB400 471.7 628.1
    下载: 导出CSV

    表  4  抗弯承载力试验结果与纵筋锈蚀程度

    Table  4.   Test results of flexural bearing capacity and corrosion level of reinforcements

    试件
    编号
    峰值荷载/
    kN
    峰值荷载时
    跨中挠度/mm
    平均质量锈蚀率/% 最大质量锈蚀率/%
    O1 136.22 12.31 0 0
    B1 133.83 11.56 0.34 0.62
    B2 120.69 9.31 0.68 0.75
    B3 112.61 8.50 0.78 1.05
    B4 127.54 12.29 1.38 3.98
    B5 132.96 12.61 1.06 4.77
    B6 115.11 9.54 1.88 5.28
    B7 99.24 9.45 3.47 9.84
    B8 99.03 10.19 4.37 10.96
    B9 98.91 N/A 4.15 10.57
    下载: 导出CSV
  • [1] ZHANG D F, XIONG J B, WANG S N, et al. Comparative study on the durability of pile, beam and slab reinforced concrete structure in marine environment[J]. IOP Conference Series: Earth and Environmental Science, 2021, 719(2): 022027.1-022027.15. doi: 10.1088/1755-1315/719/2/022027
    [2] 金伟良. 氯盐环境下混凝土结构耐久性理论与设计方法[M]. 北京: 科学出版社,2011: 135-140.
    [3] YIN S P, HUA Y T, YU Y L. Flexural durability and chloride diffusion equation of TRC-strengthened beams under a chloride environment[J]. KSCE Journal of Civil Engineering, 2020, 24(6): 1868-1880. doi: 10.1007/s12205-020-1640-7
    [4] FRANÇOIS R, ARLIGUIE G. Influence of service cracking on reinforcement steel corrosion[J]. Journal of Materials in Civil Engineering, 1998, 10(1): 14-20. doi: 10.1061/(ASCE)0899-1561(1998)10:1(14)
    [5] YU L W, FRANÇOIS R, DANG V H, et al. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: effect of load-induced cracks, concrete cover, and exposure conditions[J]. Cement and Concrete Research, 2015, 67: 246-258. doi: 10.1016/j.cemconres.2014.10.007
    [6] 左志亮,张帆,罗赤宇,等. 缓黏结预应力混凝土梁耐久性能试验研究[J]. 土木工程学报,2019,52(9): 69-78.

    ZUO Zhiliang, ZHANG Fan, LUO Chiyu, et al. Research on durability of retard-bonded prestressed concrete beams[J]. China Civil Engineering Journal, 2019, 52(9): 69-78.
    [7] LU Z H, LI H, LI W G, et al. Shear behavior degradation and failure pattern of reinforced concrete beam with chloride-induced stirrup corrosion[J]. Advances in Structural Engineering, 2019, 22(14): 2998-3010. doi: 10.1177/1369433219855917
    [8] 郭诗惠,刘炳. 锈蚀钢筋混凝土梁抗弯承载力计算与分析[J]. 建筑结构,2017,47(4): 44-48.

    GUO Shihui, LIU Bing. Calculation and analysis of flexural bearing capacity of corroded reinforced concrete beams[J]. Building Structure, 2017, 47(4): 44-48.
    [9] 何世钦,王海超,贡金鑫. 荷载与锈蚀共同作用下钢筋混凝土梁抗弯试验研究[J]. 水力发电学报,2007,26(6): 46-51. doi: 10.3969/j.issn.1003-1243.2007.06.009

    HE Shiqin, WANG Haichao, GONG Jinxin. Study on flexural experiment of reinforced concrete beams under simultaneous service loading and corrosion[J]. Journal of Hydroelectric Engineering, 2007, 26(6): 46-51. doi: 10.3969/j.issn.1003-1243.2007.06.009
    [10] 金伟良,王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. 浙江大学学报(工学版),2014,48(2): 221-227.

    JIN Weiliang, WANG Yi. Experimental study on mechanics behaviors of reinforced concrete beams under simultaneous chloride attacks and sustained load[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(2): 221-227.
    [11] HE S Q, CAO Z Y, LIU W J, et al. Experimental study on long-term performance of reinforced concrete beams under a sustained load in a corrosive environment[J]. Construction and Building Materials, 2020, 234: 117288.1-117288.11. doi: 10.1016/j.conbuildmat.2019.117288
    [12] YUAN Y, JI Y, SHAH S P. Comparison of two accelerated corrosion techniques for concrete structures[J]. ACI Structural Journal, 2007, 104(3): 344-347.
    [13] 混凝土结构设计规范:GB 50010—2010 [S]. 北京: 中国建筑工业出版社,2011.
    [14] American Society for Testing and Materials. Standard specification for Portland cement: ASTM C150[S]. Pennsylvania: West Conshohocken, 2020.
    [15] BALLIM Y, REID J C. Reinforcement corrosion and the deflection of RC beams––an experimental critique of current test methods[J]. Cement and Concrete Composites, 2003, 25(6): 625-632. doi: 10.1016/S0958-9465(02)00076-8
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  35
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 修回日期:  2022-05-24
  • 网络出版日期:  2024-07-09

目录

    /

    返回文章
    返回