Wind-Induced Vibration of 400 km/h Trains with Vertical Sound Barrier on Highspeed Railway Bridge
-
摘要:
高铁列车提速使声屏障动力问题凸显. 以列车高速行驶时引发的直立式声屏障的动力放大系数为研究对象,探究直立式声屏障结构的振动特性及影响参数. 首先,建立高铁桥上直立式声屏障有限元模型,分析其基本动力特性;然后,开展声屏障在400 km/h移动列车脉动风荷载时程作用下的振动规律研究,据此计算声屏障钢结构的动力放大系数;最后,针对声屏障的振动响应和动力放大系数开展多参数分析. 结果表明:车速400 km/h时,5.0 m高声屏障立柱的动力放大系数约为2.76;声屏障安装位置距轨道中心线距离从3.8 m增大到4.7 m,弯矩响应的动力放大系数减小了0.3;2.3、3.3、5.0 m高声屏障立柱弯矩响应的动力放大系数分别为1.64、2.52、2.76,顶部的横向位移由0.45 mm增大至3.80 mm,根部弯矩则分别提高了26.8%和60.8%,增大声屏障高度不利于结构的振动特性.
Abstract:The increasing speed of high-speed trains makes the dynamic problem of sound barriers prominent. In this study, the dynamic amplification factor of vertical sound barriers caused by high-speed trains was taken as the research object to explore the vibration characteristics and influencing parameters of vertical sound barriers. Firstly, the finite element model of the vertical sound barrier on a high-speed railway bridge was established, and its basic dynamic characteristics were analyzed. Then, the vibration law of the sound barrier under the fluctuating wind load of 400 km/h train was studied, and the dynamic amplification factor of the sound barrier steel structure was calculated based on it. Finally, the vibration response and dynamic amplification factor of the sound barrier were analyzed with multiple parameters. The results show that the dynamic amplification factor of the sound barrier column with a height of 5.0 m is about 2.76 when the train’s speed is 400 km/h. The distance between the installed sound barrier and the center line of the track is increased from 3.8 m to 4.7 m, and the dynamic amplification factor of the bending moment response is reduced by 0.3. The dynamic magnification factors of the bending moment responses of sound barrier columns with a height of 2.3, 3.3, and 5.0 m are 1.64, 2.52, and 2.76, respectively. The transverse displacement of the top is increased from 0.45 mm to 3.80 mm, while the bending moment of the bottom is increased by 26.8% and 60.8%, respectively. Increasing the height of the sound barrier is not conducive to the vibration characteristics of the structure.
-
表 1 板单元和立柱材料参数
Table 1. Material parameters of plate elements and columns
名称 弹性模量/GPa 泊松比 密度/(kg·m−3) 金属单元板 71.0 0.330 25.49 通透隔声板 3.1 0.370 1224.00 立柱 210.0 0.274 798.00 表 2 声屏障前10 阶频率
Table 2. Top ten frequencies of sound barrier
Hz 模态号 频率 模态号 频率 1 10.484 6 18.018 2 11.319 7 18.101 3 13.294 8 18.132 4 15.846 9 18.145 5 17.650 10 18.151 表 3 数值模拟结果与试验结果比较
Table 3. Comparison between numerical simulation results and experimental results
条件 车速/(km·h−1) 实测值/Pa 仿真值/Pa 误差/% 正压峰值 300 535 507 5.2 350 698 715 2.4 380 889 880 1.0 负压峰值 300 −397 −366 7.8 350 −531 −508 4.3 380 −691 −646 6.5 表 4 时速400 km/h声屏障立柱动力放大系数
Table 4. Dynamic amplification factors of sound barrier columns at train’s speed of 400 km/h
类别 立柱底部应力/MPa 立柱横桥向弯矩/(kN·m) 静力作用 2.81 2.38 动力作用 7.77 6.57 放大系数 2.77 2.76 表 5 动力放大系数计算值与规范值对比
Table 5. Comparison between calculated value and value given by specification of dynamic amplification factor
声屏障
高度/m指标 计算值 规范值 2.3 立柱底部应力 1.26 1.25 2.3 立柱横桥向弯矩 1.26 3.3 立柱底部应力 2.11 2.11 3.3 立柱横桥向弯矩 2.10 -
[1] SOPER D, GILLMEIER S, BAKER C, et al. Aerodynamic forces on railway acoustic barriers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 266-278. doi: 10.1016/j.jweia.2019.06.009 [2] XIONG X H, YANG B, WANG K W, et al. Full-scale experiment of transient aerodynamic pressures acting on a bridge noise barrier induced by the passage of high-speed trains operating at 380–420 km/h[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104298.1-104298.9. [3] LÜ M, LI Q, NING Z, et al. Study on the aerodynamic load characteristic of noise reduction barrier on high-speed railway[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 254-262. doi: 10.1016/j.jweia.2018.03.031 [4] XIONG X H, LI A H, LIANG X F, et al. Field study on high-speed train induced fluctuating pressure on a bridge noise barrier[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 177: 157-166. doi: 10.1016/j.jweia.2018.04.017 [5] DU J, ZHANG L, YANG M Z, et al. Moving model experiments on transient pressure induced by a high-speed train passing through noise barrier[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104267.1-104267.10. [6] 王言聿,郭旭,成志强. CRH3动车组高速出入声屏障时压力场特性的试验研究[J]. 应用力学学报,2020,37(4):1528-1533,1858. doi: 10.11776/cjam.37.04.B028WANG Yanyu, GUO Xu, CHENG Zhiqiang. Experimental research on pressure field of noise barrier during entrance or departure of CRH3 EMU train[J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1528-1533,1858. doi: 10.11776/cjam.37.04.B028 [7] 何旭辉,郭柯桢,杨斌,等. 高速铁路840 m全封闭声屏障气压荷载数值模拟研究[J]. 中国铁道科学,2020,41(3):137-144. doi: 10.3969/j.issn.1001-4632.2020.03.16HE Xuhui, GUO Kezhen, YANG Bin, et al. Numerical simulation of air pressure load on 840 m fully-enclosed sound barrier of high-speed railway[J]. China Railway Science, 2020, 41(3): 137-144. doi: 10.3969/j.issn.1001-4632.2020.03.16 [8] 施洲,杨仕力,蒲黔辉,等. 350~400 km·h−1高速列车作用于声屏障的脉动风荷载特性研究[J]. 中国铁道科学,2018,39(2):103-111. doi: 10.3969/j.issn.1001-4632.2018.02.13SHI Zhou, YANG Shili, PU Qianhui, et al. Research on fluctuating wind load characteristics of sound barrier under action of G-series high-speed train with speed of 350–400 km·h−1[J]. China Railway Science, 2018, 39(2): 103-111. doi: 10.3969/j.issn.1001-4632.2018.02.13 [9] 何旭辉,吉晓宇,敬海泉,等. 高速铁路全封闭声屏障列车压力波和微气压波数值模拟研究[J]. 空气动力学学报,2021,39(5):142-150. doi: 10.7638/kqdlxxb-2020.0037HE Xuhui, JI Xiaoyu, JING Haiquan, et al. Numerical simulations of the pressure waves and micro pressure waves generated by a high-speed train passing through an enclosed sound barrier[J]. Acta Aerodynamica Sinica, 2021, 39(5): 142-150. doi: 10.7638/kqdlxxb-2020.0037 [10] 何佳骏,向活跃,曾敏,等. 高速铁路桥梁全封闭声屏障列车压力波荷载的数值模拟[J]. 振动与冲击,2020,39(20):175-182.HE Jiajun, XIANG Huoyue, ZENG Min, et al. Numerical simulation for pressure waves of closed noise barrier on high speed railway bridges[J]. Journal of Vibration and Shock, 2020, 39(20): 175-182. [11] TOKUNAGA M, SOGABE M, SANTO T, et al. Dynamic response evaluation of tall noise barrier on high speed railway structures[J]. Journal of Sound and Vibration, 2016, 366: 293-308. doi: 10.1016/j.jsv.2015.12.015 [12] VITTOZZI A, SILVESTRI G, GENCA L, et al. Fluid dynamic interaction between train and noise barriers on High-Speed-Lines[J]. Procedia Engineering, 2017, 199: 290-295. doi: 10.1016/j.proeng.2017.09.035 [13] 罗文俊,李恒斌. 脉动风荷载作用下声屏障动力响应分析[J]. 噪声与振动控制,2016,36(2):162-165,184.LUO Wenjun, LI Hengbin. Dynamic response analysis of noise barrier structures under impulsive wind load[J]. Noise and Vibration Control, 2016, 36(2): 162-165,184. [14] ZHENG J, LI Q L, LI X Z, et al. Train-induced fluctuating pressure and resultant dynamic response of semienclosed sound barriers[J]. Shock and Vibration, 2020, 2020: 6901564.1-6901564.16. [15] 卫星,张靖,魏欢博,等. 基于振动响应的高铁声屏障结构体系研究[J]. 西南交通大学学报,2022,57(2):353-359,409. doi: 10.3969/j.issn.0258-2724.20200243WEI Xing, ZHANG Jing, WEI Huanbo, et al. Structural effect on mechanical behavior of high-speed railway sound barriers based on vibration response[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 353-359,409. doi: 10.3969/j.issn.0258-2724.20200243 [16] 刘功玉,罗文俊,李恒斌. 高速列车所致声屏障结构的动力响应分析[J]. 噪声与振动控制,2017,37(6):126-130. doi: 10.3969/j.issn.1006-1355.2017.06.026LIU Gongyu, LUO Wenjun, LI Hengbin. Dynamic response analysis of sound barrier structures under high speed train traveling condition[J]. Noise and Vibration Control, 2017, 37(6): 126-130. doi: 10.3969/j.issn.1006-1355.2017.06.026 [17] 罗云柯. 高速铁路半封闭声屏障的列车脉动风致振动分析[D]. 成都: 西南交通大学,2018. [18] 吕坚品,张继文,廖建州,等. 既有铁路桥梁声屏障的高速列车脉动风致响应[J]. 西南交通大学学报,2009,44(4):547-551. doi: 10.3969/j.issn.0258-2724.2009.04.013LÜ Jianpin, ZHANG Jiwen, LIAO Jianzhou, et al. Response of noise barrier for existing railway bridges under impulsive pressure induced by high-speed train[J]. Journal of Southwest Jiaotong University, 2009, 44(4): 547-551. doi: 10.3969/j.issn.0258-2724.2009.04.013 [19] 李恒斌. 基于脉动风荷载作用下声屏障的研究[D]. 南昌: 华东交通大学,2016. [20] 刘丹. 基于Lanczos算法的模态重分析方法的研究与应用[D]. 长沙: 湖南大学,2014. [21] 毕然,李小珍,郑净,等. 400 km·h−1高铁桥上直立式声屏障脉动风压特性[J]. 中国铁道科学,2021,42(6):68-77. doi: 10.3969/j.issn.1001-4632.2021.06.08BI Ran, LI Xiaozhen, ZHENG Jing, et al. Fluctuating wind pressure characteristics of vertical sound barrier on 400 km·h−1 high-speed railway bridge[J]. China Railway Science, 2021, 42(6): 68-77. doi: 10.3969/j.issn.1001-4632.2021.06.08 [22] 吴小红. 基于检波技术的交流信号有效值的计算与测试[J]. 电子测试,2020(24):51-52,114. doi: 10.3969/j.issn.1000-8519.2020.24.018WU Xiaohong. Calculation and test of effective value of AC signal based on geophone technology[J]. Electronic Test, 2020(24): 51-52,114. doi: 10.3969/j.issn.1000-8519.2020.24.018 [23] 王宁波,周逸,周德. 基于实际影响线的移动车辆过桥动力放大系数计算方法[J]. 中南大学学报(自然科学版),2020,51(7):1853-1861. doi: 10.11817/j.issn.1672-7207.2020.07.011WANG Ningbo, ZHOU Yi, ZHOU De. A calculation method for moving vehicle induced bridge dynamic amplification factor based on influence line[J]. Journal of Central South University (Science and Technology), 2020, 51(7): 1853-1861. doi: 10.11817/j.issn.1672-7207.2020.07.011 [24] 中国铁道科学研究院集团有限公司,中铁第四勘察设计院集团有限公司. 时速250公里、350公里高速铁路桥梁插板式声屏障安装图:通环(2018)8323—2018[S]. 北京: 中国铁路总公司,2018. [25] 刘功玉,罗文俊,李恒斌. 风荷载作用下高速铁路声屏障结构的动力响应分析[J]. 城市轨道交通研究,2019,22(9):27-31.LIU Gongyu, LUO Wenjun, LI Hengbin. Dynamic response analysis of high-speed railway noise barrier structure under wind load[J]. Urban Mass Transit, 2019, 22(9): 27-31.