• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

真空管道磁浮交通气动特性的尺度效应

胡啸 马天昊 王潇飞 邓自刚 张继旺 张卫华 张琨 彭方进

胡啸, 马天昊, 王潇飞, 邓自刚, 张继旺, 张卫华, 张琨, 彭方进. 真空管道磁浮交通气动特性的尺度效应[J]. 西南交通大学学报, 2023, 58(4): 808-819. doi: 10.3969/j.issn.0258-2724.20220010
引用本文: 胡啸, 马天昊, 王潇飞, 邓自刚, 张继旺, 张卫华, 张琨, 彭方进. 真空管道磁浮交通气动特性的尺度效应[J]. 西南交通大学学报, 2023, 58(4): 808-819. doi: 10.3969/j.issn.0258-2724.20220010
HU Xiao, MA Tianhao, WANG Xiaofei, DENG Zigang, ZHANG Jiwang, ZHANG Weihua, ZHANG Kun, PENG Fangjin. Scale Effect of Aerodynamic Characteristics in Evacuated Tube Maglev Transport[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 808-819. doi: 10.3969/j.issn.0258-2724.20220010
Citation: HU Xiao, MA Tianhao, WANG Xiaofei, DENG Zigang, ZHANG Jiwang, ZHANG Weihua, ZHANG Kun, PENG Fangjin. Scale Effect of Aerodynamic Characteristics in Evacuated Tube Maglev Transport[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 808-819. doi: 10.3969/j.issn.0258-2724.20220010

真空管道磁浮交通气动特性的尺度效应

doi: 10.3969/j.issn.0258-2724.20220010
基金项目: 国家自然科学基金(52022086);四川省科技厅创新团队项目(2022JDTD0011)
详细信息
    作者简介:

    胡啸(1995—),男,博士研究生,研究方向为轨道交通气动效应及控制,E-mail:hu@my.swjtu.edu.cn

    通讯作者:

    邓自刚(1982—),男,研究员,研究方向为高温超导磁悬浮及真空管道交通,E-mail:deng@swjtu.cn

  • 中图分类号: U171;TB79

Scale Effect of Aerodynamic Characteristics in Evacuated Tube Maglev Transport

  • 摘要:

    为了探究管道列车的尺度对波系、尾涡以及气动载荷的影响,基于CFD软件建立三种模型尺度(1∶1,1∶5和1∶10),同时考虑两种悬浮间隙关系(车轨相对间隙不变和绝对悬浮高度不变)的模型;采用改进的延迟分离涡模拟(IDDES)湍流模型和重叠网格技术模拟了列车在管道动态运动,并用风洞试验数据验证了数值方法和网格策略的合理性. 研究结果表明:列车尺度(雷诺数)增大,车前活塞区域变长,尾流扰动区范围缩短;雷诺数对近尾流区的涡对演化影响较小,但在远尾流区,随着列车尺度减小,涡对脉动变强,涡对强度的差异导致了车后正激波形态的差异;列车表面最大正压值和最大负压值均随着列车尺度增大而增大,悬浮间隙对最大正压值影响较小,但与最大负压值成正相关关系;尺度效应从压差阻力和摩擦阻力两方面共同影响气动阻力,整车摩擦阻力和头、中间车的压差阻力与雷诺数正相关,但是尾车压差阻力受附着激波的强度影响恰恰相反;列车尺度和悬浮高度均对升力影响较大. 相对于全尺寸模型,1∶10模型(悬浮高度20 mm)的最大正压值减小3.82%,最大负压值增大3.94%,整车总阻力增大8.64%,头车升力减小101.56%,尾车升力增大15.88%.

     

  • 图 1  高温超导磁浮列车和管道几何模型

    Figure 1.  Geometric models for high-temperature superconducting maglev train and tube

    图 2  计算区域与边界条件

    Figure 2.  Computational region and boundary conditions

    图 3  计算模型的体网格

    Figure 3.  Volume mesh of computational model

    图 4  SOCBT模型尺寸

    Figure 4.  Size of SOCBT model

    图 5  SOCBT上表面压力系数分布

    Figure 5.  Distribution of surface pressure coefficient of SOCBT

    图 6  列车前方空间流场分布

    Figure 6.  Spatial flow field distribution in front of the train

    图 7  列车尾流流场空间分布

    Figure 7.  Spatial distribution of train wake flow field

    图 8  不同尺度下管道空间压力分布

    Figure 8.  Pressure distribution inside the tube with different scales

    图 9  不同尺度下尾涡结构

    Figure 9.  Wake vortex structure with different scales

    图 10  列车纵向对称线Cp分布比较

    Figure 10.  Comparison of Cp distribution on the longitudinal symmetry line of the train

    表  1  计算工况参数

    Table  1.   Parameters of calculation cases

    工况缩尺
    比例
    列车速度/
    (km·h−1
    雷诺
    数/×105
    悬浮
    高度/m
    11∶110007.2400.020
    21∶510001.4480.004
    31∶510001.4480.020
    41∶1010000.7240.002
    51∶1010000.7240.020
    下载: 导出CSV

    表  2  不同尺度下列车平均阻力系数

    Table  2.   Average drag coefficient of trains with different scales

    工况头车中间车尾车整车
    压差
    阻力
    摩擦
    阻力
    总阻力压差
    阻力
    摩擦
    阻力
    总阻力压差
    阻力
    摩擦
    阻力
    总阻力压差
    阻力
    摩擦
    阻力
    总阻力
    11.21440.06221.27660.01320.05370.06691.18260.08151.26412.43590.19802.6339
    21.23090.07951.31040.01470.07060.08541.16150.11191.27342.41980.26292.6827
    31.25910.07991.33900.02250.07280.09531.17950.11391.29342.47460.26652.7412
    41.23630.08631.32260.01630.08080.09701.15190.13131.28322.41440.29932.7137
    51.28540.08651.37190.04000.08600.12601.21490.13571.35062.55220.30932.8615
    下载: 导出CSV

    表  3  不同尺度下列车平均升力系数

    Table  3.   Average lift coefficient of trains with different scales

    工况头车中间车尾车整车
    10.1156−0.00290.33680.4363
    20.0534−0.01900.36590.3920
    30.0171−0.02520.37540.3562
    40.0491−0.01670.36880.3883
    5−0.0018−0.04240.39030.3368
    下载: 导出CSV
  • [1] 邓自刚,张勇,王博,等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报,2019,54(5): 1063-1072.

    DENG Zigang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072.
    [2] VAN GOEVERDEN K, MILAKIS D, JANIC M, et al. Analysis and modelling of performances of the HL (Hyperloop) transport system[J]. European Transport Research Review, 2018, 10(2): 1-17.
    [3] MA T H, HU X, WANG J K, et al. Effect of air pressure on aerodynamic characteristics of the HTS maglev running in a tube[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 0501004.1-0501004.4.
    [4] SUI Y, NIU J Q, RICCO P, et al. Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube[J]. International Journal of Heat and Fluid Flow, 2021, 88: 108752.1-108752.14.
    [5] KANG H, JIN Y M, KWON H, et al. A study on the aerodynamic drag of transonic vehicle in evacuated tube using computational fluid dynamics[J]. International Journal of Aeronautical and Space Sciences, 2017, 18(4): 614-622. doi: 10.5139/IJASS.2017.18.4.614
    [6] 周鹏,李田,张继业,等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报,2020,56(2): 86-97. doi: 10.3901/JME.2020.02.086

    ZHOU Peng, LI Tian, ZHANG Jiye, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86-97. doi: 10.3901/JME.2020.02.086
    [7] BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodynamics, 2020, 2: 28.1-28.18.
    [8] 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
    [9] ZHOU P, ZHANG J Y, LI T, et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 61-70. doi: 10.1016/j.jweia.2019.04.003
    [10] ZHOU P, ZHANG J Y. Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train[J]. Vacuum, 2020, 173: 109142.1-109142.9.
    [11] NIU J Q, SUI Y, YU Q J, et al. Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 100-111. doi: 10.1016/j.jweia.2019.04.001
    [12] NIU J Q, SUI Y, YU Q J, et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 105977.1-105977.12.
    [13] 张晓涵,李田,张继业,等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报,2021,57(4): 182-190. doi: 10.3901/JME.2021.04.182

    ZHANG Xiaohan, LI Tian, ZHANG Jiye, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182-190. doi: 10.3901/JME.2021.04.182
    [14] HU X, DENG Z G, ZHANG J W, et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures, 2021, 107: 103413.1-103413.16.
    [15] HU X, DENG Z G, ZHANG J W, et al. Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122130.1-122130.13.
    [16] ZHONG S, QIAN B S, YANG M Z, et al. Investigation on flow field structure and aerodynamic load in vacuum tube transportation system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 215: 104681.1-104681.14.
    [17] YU Q J, YANG X F, NIU J Q, et al. Aerodynamic thermal environment around transonic tube train in choked/unchoked flow[J]. International Journal of Heat and Fluid Flow, 2021, 92: 108890.1-108890.15.
    [18] BIZZOZERO M, SATO Y, SAYED M A. Aerodynamic study of a Hyperloop pod equipped with compressor to overcome the Kantrowitz limit[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 218: 104784.1-104784.16.
    [19] ZHOU K Y, DING G F, WANG Y M, et al. Aeroheating and aerodynamic performance of a transonic hyperloop pod with radial gap and axial channel: a contrastive study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 212: 104591.1-104591.16.
    [20] HU X, DENG Z G, ZHANG W H. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104562.1-104562.15.
    [21] JIA W G, WANG K, CHENG A P, et al. Air flow and differential pressure characteristics in the vacuum tube transportation system based on pressure recycle ducts[J]. Vacuum, 2018, 150: 58-68. doi: 10.1016/j.vacuum.2017.12.023
    [22] DENG Z G, ZHANG W H, ZHENG J, et al. A high-temperature superconducting maglev-evacuated tube transport (HTS maglev-ETT) test system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(6): 3602008.1-3602008.8.
    [23] 刘英杰. 真空管道高速交通系统气动特性试验装置的研制[D]. 青岛: 青岛科技大学, 2015.
    [24] 田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007.
    [25] 韩运动,姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版),2017,51(12): 2383-2391. doi: 10.3785/j.issn.1008-973X.2017.12.010

    HAN Yundong, YAO Song. Scale effect analysis in aerodynamic performance of high-speed train[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(12): 2383-2391. doi: 10.3785/j.issn.1008-973X.2017.12.010
    [26] NIU J Q, ZHOU D, LIANG X F, et al. Numerical simulation of the Reynolds number effect on the aerodynamic pressure in tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 173: 187-198. doi: 10.1016/j.jweia.2017.12.013
    [27] TSCHEPE J, NAYERI C N, PASCHEREIT C O. On the influence of Reynolds number and ground conditions on the scaling of the aerodynamic drag of trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 213: 104594.1-104594.22.
    [28] 孟石,周丹,孟爽. 轨道间隙对磁浮列车气动性能的影响[J]. 中南大学学报(自然科学版),2020,51(12): 3537-3545.

    MENG Shi, ZHOU Dan, MENG Shuang. Effect of rail gap on aerodynamic performance of maglev train[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3537-3545.
    [29] 胡啸,孔繁冰,梁永廷,等. 线间距对高速列车隧道内交会压力波影响的数值模拟研究[J]. 振动与冲击,2020,39(21): 79-88.

    HU Xiao, KONG Fanbing, LIANG Yongting, et al. Numerical simulation for influence of line spacing on crossing pressure wave of high-speed trains in tunnel[J]. Journal of Vibration and Shock, 2020, 39(21): 79-88.
    [30] 胡啸,余以正,陈然,等. 隧道内高速列车交会时车体两侧压差波动特性数值模拟研究[J]. 铁道机车车辆,2019,39(3): 124-130.

    HU Xiao, YU Yizheng, CHEN Ran, et al. Numerical simulation study on pressure difference fluctuation on both sides of car when high-speed trains crossing in tunnel[J]. Railway Locomotive & Car, 2019, 39(3): 124-130.
    [31] 王慕之,梅元贵,贾永兴. 重叠网格法应用于模拟高速列车隧道气动效应[J]. 应用力学学报,2017,34(3): 589-595.

    WANG Muzhi, MEI Yuangui, JIA Yongxing. Simulation of aerodynamic effects generated by a high-speed train passing through a tunnel with overset grid method[J]. Chinese Journal of Applied Mechanics, 2017, 34(3): 589-595.
    [32] ZHOU P, QIN D, ZHANG J Y, et al. Aerodynamic characteristics of the evacuated tube maglev train considering the suspension gap[J]. International Journal of Rail Transportation, 2022, 10(2): 195-215. doi: 10.1080/23248378.2021.1885514
    [33] DONG T Y, MINELLI G, WANG J B, et al. The effect of ground clearance on the aerodynamics of a generic high-speed train[J]. Journal of Fluids and Structures, 2020, 95: 102990.1-102990.20.
    [34] WANG S B, BURTON D, HERBST A H, et al. The effect of the ground condition on high-speed train slipstream[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 230-243. doi: 10.1016/j.jweia.2017.11.009
    [35] KAYSER L, WHITON F. Surface pressure measurements on a boattailed projectile shape at transonic speeds[R]. Maryland: Army Ballistic Research Laboratory, 1982.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1201
  • HTML全文浏览量:  83
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 修回日期:  2022-08-21
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2022-08-29

目录

    /

    返回文章
    返回