• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于自感知纤维增强复合材料锚杆的隧道围岩松动圈识别

李锦辉 张俊齐 魏强 贾大鹏 郭东 白石 欧进萍

李锦辉, 张俊齐, 魏强, 贾大鹏, 郭东, 白石, 欧进萍. 基于自感知纤维增强复合材料锚杆的隧道围岩松动圈识别[J]. 西南交通大学学报, 2024, 59(1): 11-19. doi: 10.3969/j.issn.0258-2724.20220003
引用本文: 李锦辉, 张俊齐, 魏强, 贾大鹏, 郭东, 白石, 欧进萍. 基于自感知纤维增强复合材料锚杆的隧道围岩松动圈识别[J]. 西南交通大学学报, 2024, 59(1): 11-19. doi: 10.3969/j.issn.0258-2724.20220003
LI Jinhui, ZHANG Junqi, WEI Qiang, JIA Dapeng, GUO Dong, BAI Shi, OU Jinping. Loose Zone Identification for Surrounding Rock of Tunnels Using Self-Sensing Fiber Reinforced Plastic Anchors[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 11-19. doi: 10.3969/j.issn.0258-2724.20220003
Citation: LI Jinhui, ZHANG Junqi, WEI Qiang, JIA Dapeng, GUO Dong, BAI Shi, OU Jinping. Loose Zone Identification for Surrounding Rock of Tunnels Using Self-Sensing Fiber Reinforced Plastic Anchors[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 11-19. doi: 10.3969/j.issn.0258-2724.20220003

基于自感知纤维增强复合材料锚杆的隧道围岩松动圈识别

doi: 10.3969/j.issn.0258-2724.20220003
基金项目: 中国国家铁路集团有限公司科技研究开发计划(K2020G031)
详细信息
    作者简介:

    李锦辉(1978—),女,教授,博士,研究方向为岩土工程智能监测与诊断,E-mail:jinhui.li@hit.edu.cn

  • 中图分类号: U25

Loose Zone Identification for Surrounding Rock of Tunnels Using Self-Sensing Fiber Reinforced Plastic Anchors

  • 摘要:

    隧道围岩变形和松动圈厚度是隧道结构设计的重要考虑因素和安全运营的重要参考依据,现有的松动圈识别方法和隧道围岩变形测量手段多停留在检测层面,缺乏长期实时监测方法. 为此,研发内嵌光纤的自感知纤维增强复合材料(FRP)锚杆,提出基于内嵌光纤自感知FRP锚杆的隧道围岩智能监测系统,可以实现对围岩变形立体化、全天候的实时监测;结合监测数据与理论分析,提出隧道围岩松动圈的识别方法,并将该智能监测方法应用于广汕高铁陈塘隧道. 研究结果表明:自感知FRP锚杆能够精准探知现场施工对围岩变形的影响规律,型钢钢架对隧道围岩的支护作用较为突出;监测数据可以实时反映自感知锚杆的受力规律,从而准确识别隧道不同位置围岩的松动圈厚度;基于自感知FRP锚杆的隧道围岩智能监测系统将在隧道运营过程中持续、实时监测隧道围岩的变形,为隧道全生命周期的结构安全提供高技术保障.

     

  • 图 1  自感知FRP锚杆及其生产流程

    Figure 1.  Self-sensing FRP anchor and its production flow

    图 2  光纤光栅温度传感器

    Figure 2.  Fiber Bragg grating temperature sensor

    图 3  监测系统安装流程及示意

    Figure 3.  Monitoring system installation process

    图 4  自感知锚杆布置示意

    Figure 4.  Layout of self-sensing anchor

    图 5  锚杆的现场安装与保护

    Figure 5.  Installation and protection of anchor on site

    图 6  数据采集和无线传输系统

    Figure 6.  Data acquisition and remote transmission system

    图 7  M1断面右拱肩锚杆应变

    Figure 7.  Strain of anchor at right spandrel of M1 section

    图 8  M1断面右拱肩处锚杆的轴向应变分布

    Figure 8.  Axial strain distribution of anchor at right spandrel of M1 section

    图 9  M1断面右拱肩处锚杆受力分析

    Figure 9.  Force analysis of anchor at right spandrel of M1 section

    图 10  M1、M2断面左边墙处锚杆轴向应变分布

    Figure 10.  Axial strain distribution of anchors at left wall of M1 and M2 sections

    图 11  M2断面左边墙处锚杆受力分析简图

    Figure 11.  Force analysis of anchor at left wall of M2 section

  • [1] 田四明,王伟,巩江峰. 中国铁路隧道发展与展望(含截至2020年底中国铁路隧道统计数据)[J]. 隧道建设(中英文),2021,41(2): 308-325.

    TIAN Siming, WANG Wei, GONG Jiangfeng. Development and prospect of railway tunnels in china (including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308-325.
    [2] 谢永江,李康,胡建伟,等. 高速铁路混凝土结构耐久性技术创新及发展方向[J]. 土木工程学报,2021,54(10): 72-81.

    XIE Yongjiang, LI Kang, HU Jianwei, et al. Technology innovation and development tendency of concrete structure durability for high-speed railway[J]. China Civil Engineering Journal, 2021, 54(10): 72-81.
    [3] 靖洪文,孟庆彬,朱俊福,等. 深部巷道围岩松动圈稳定控制理论与技术进展[J]. 采矿与安全工程学报,2020,37(3): 429-442.

    JING Hongwen, MENG Qingbin, ZHU Junfu, et al. Theoretical and technical progress of stability control of broken rock zone of deep roadway surrounding rock[J]. Journal of Mining & Safety Engineering, 2020, 37(3): 429-442.
    [4] 徐国文,何川,汪耀,等. 层状软岩隧道围岩破坏的连续-离散耦合分析[J]. 西南交通大学学报,2018,53(5): 966-973.

    XU Guowen, HE Chuan, WANG Yao, et al. Failure analysis on surrounding rock of soft-layered rock tunnel using coupled continuum-discrete model[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 966-973.
    [5] 王志杰,周平,杨建民,等. 昔格达地层隧道围岩的失稳特征及变形控制工法[J]. 西南交通大学学报,2019,54(4): 757-768.

    WANG Zhijie, ZHOU Ping, YANG Jianmin, et al. Instability properties and deformation control methods of rocks surrounding Xigeda strata[J]. Journal of Southwest Jiaotong University, 2019, 54(4): 757-768.
    [6] 翟锐,赵帮亚. 声波测试法在隧道围岩完整性判别中的应用[J]. 现代交通技术,2014,11(3): 51-53,76.

    ZHAI Rui, ZHAO Bangya. Application of acoustic detection method in integrity distinguishing for tunnel surrounding rock[J]. Modern Transportation Technology, 2014, 11(3): 51-53,76.
    [7] MENG Y Y, XUE S, WANG R, et al. Acoustic method based on integrity coefficient for testing the loose circle of surrounding rock[J]. Journal of Highway and Transportation Research and Development (English Edition), 2018, 12(2): 67-72. doi: 10.1061/JHTRCQ.0000627
    [8] 杨艳国,范楠. 基于单孔声波法测试巷道围岩松动圈试验研究[J]. 煤炭科学技术,2019,47(3): 93-100.

    YANG Yanguo, FAN Nan. Experimental study on surrounding rock loosing circle by single-hole acoustic wave testing method[J]. Coal Science and Technology, 2019, 47(3): 93-100.
    [9] 张平松,刘盛东,吴荣新,等. 峒室围岩松动圈震波探测技术与应用[J]. 煤田地质与勘探,2003,31(1): 54-56.

    ZHANG Pingsong, LIU Shengdong, WU Rongxin, et al. The application of seismic technique in broken zone detecting[J]. Coal Geology & Exploration, 2003, 31(1): 54-56.
    [10] ZHANG X B. The probe technology and counter measures of goaf of colliery area in Tongluoshan tunnel[J]. Applied Mechanics and Materials, 2012, 204/205/206/207/208: 1419-1422.
    [11] 于庆磊,蒲江涌,勒治华,等. 基于地质雷达的矽卡岩型铜铁矿巷道松动圈研究[J]. 金属矿山,2021(3): 46-53.

    YU Qinglei, PU Jiangyong, LE Zhihua, et al. Study on the broken rock zone of roadway in skarn copper-iron mine based on geological radar[J]. Metal Mine, 2021(3): 46-53.
    [12] 龚建伍,夏才初,朱合华. 鹤上隧道围岩松动圈测试与分析[J]. 地下空间与工程学报,2007,3(3): 475-478.

    GONG Jianwu, XIA Caichu, ZHU Hehua. Measurement and analysis on releasing zone of surrounding rock in Heshang tunnel[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(3): 475-478.
    [13] 谷拴成,徐学文. 应变式测力锚杆的设计原理及应用[J]. 岩土工程界,2006(6): 72-73.

    GU Shuancheng, XU Xuewen. Design principle and application of strain type force measuring bolts[J]. Geotechnical Engineering World, 2006(6): 72-73.
    [14] 陈建勋,尹增廉. CD型钢弦式测力锚杆的研制[J]. 筑路机械与施工机械化,2006,23(9): 45-46.

    CHEN Jianxun, YIN Zenglian. Development of CD type vibrating-wire force anchor[J]. Road Machinery & Construction Mechanization, 2006, 23(9): 45-46.
    [15] 窦传浩,赵利平,梁义维. 锤击声学法锚杆轴力监测装置的研究[J]. 煤炭技术,2016,35(4): 273-276.

    DOU Chuanhao, ZHAO Liping, LIANG Yiwei. Study on device of monitoring axial force of rock bolt by hammering acoustics[J]. Coal Technology, 2016, 35(4): 273-276.
    [16] 李义,刘海峰,王富春. 锚杆锚固状态参数无损检测及其应用[J]. 岩石力学与工程学报,2004,23(10): 1741-1744.

    LI Yi, LIU Haifeng, WANG Fuchun. Nondestructive testing of parameters of bolt anchoring state and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(10): 1741-1744.
    [17] WU R, XU J H, LI C, et al. Stress wave propagation in supporting bolts: a test for bolt support quality[J]. International Journal of Mining Science and Technology, 2012(22): 567-571.
    [18] ELIASSON J, DELSING J, RAAYATINEZHAD A, et al. A SOA-based framework for integration of intelligent rock bolts with Internet of Things[C]//2013 IEEE International Conference on Industrial Technology (ICIT). Cape Town: IEEE, 2013: 1962-1967.
    [19] 蔡正银,周宏磊,蔡国军,等. 土工测试与勘察技术研究进展[J]. 土木工程学报,2020,53(5): 100-117.

    CAI Zhengyin, ZHOU Honglei, CAI Guojun, et al. Review of the geotechnical testing and exploration techniques[J]. China Civil Engineering Journal, 2020, 53(5): 100-117.
    [20] 柴敬,兰曙光,李继平,等. 光纤Bragg光栅锚杆应力应变监测系统[J]. 西安科技大学学报,2005,25(1): 1-4.

    CHAI Jing, LAN Shuguang, LI Jiping, et al. Stress-strain monitoring system of fiber Bragg grating sensing for mining anchor[J]. Journal of Xi’an University of Science and Technology, 2005, 25(1): 1-4.
    [21] 林传年,刘泉声,高玮,等. 光纤传感技术在锚杆轴力监测中的应用[J]. 岩土力学,2008,29(11): 3161-3164.

    LIN Chuannian, LIU Quansheng, GAO Wei, et al. Application of fiber optical sensing technology to monitoring axial forces of anchor bolts[J]. Rock and Soil Mechanics, 2008, 29(11): 3161-3164.
    [22] 高冲. 基于光纤传感的锚杆轴力监测研究[D]. 西安: 西安科技大学, 2010.
    [23] 刘中熙,李志宏,郝兵元. 基于光纤光栅技术的锚杆切向载荷定量测试研究[J]. 煤矿安全,2018,49(9): 152-156.

    LIU Zhongxi, LI Zhihong, HAO Bingyuan. Quantitative test study on tangential load of bolt based on fiber Bragg grating technology[J]. Safety in Coal Mines, 2018, 49(9): 152-156.
    [24] 翁志辉. 分布式光纤传感技术的特点与研究现状[J]. 电子元器件与信息技术,2020,4(5): 9-10.

    WENG Zhihui. Characteristics and research status of distributed optical fiber sensing technology[J]. Electronic Component and Information Technology, 2020, 4(5): 9-10.
    [25] 周智. 土木工程结构光纤光栅智能传感元件及其监测系统[D]. 哈尔滨: 哈尔滨工业大学, 2003.
    [26] 王明恕. 全长锚固锚杆机理的探讨[J]. 煤炭学报,1983(1): 40-47.

    WANG Mingshu. Mechanism of full-column rock bolt[J]. Journal of China Coal Society, 1983(1): 40-47.
    [27] 姚显春,李宁,陈蕴生. 隧洞中全长粘结式锚杆的受力分析[J]. 岩石力学与工程学报,2005,24(13): 2272-2276.

    YAO Xianchun, LI Ning, CHEN Yunsheng. Theoretical solution for shear stresses on interface of fully grouted bolt in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(13): 2272-2276.
    [28] 文竞舟,王成,刘礼标. 锚杆轴力反算围岩塑性区及松动区范围研究[J]. 地下空间与工程学报,2008,4(6): 1023-1026.

    WEN Jingzhou, WANG Cheng, LIU Libiao. Research on back calculation of plastic and loose areas by axial force of rock bolt[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(6): 1023-1026.
  • 加载中
图(11)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  84
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 修回日期:  2022-04-28
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2022-05-23

目录

    /

    返回文章
    返回