• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

VMD引导的轮对与轴承复合故障诊断方法

易彩 林建辉 汪浩 廖小康 吴文逸 冉乐

易彩, 林建辉, 汪浩, 廖小康, 吴文逸, 冉乐. VMD引导的轮对与轴承复合故障诊断方法[J]. 西南交通大学学报, 2024, 59(1): 151-159. doi: 10.3969/j.issn.0258-2724.20211088
引用本文: 易彩, 林建辉, 汪浩, 廖小康, 吴文逸, 冉乐. VMD引导的轮对与轴承复合故障诊断方法[J]. 西南交通大学学报, 2024, 59(1): 151-159. doi: 10.3969/j.issn.0258-2724.20211088
YI Cai, LIN Jianhui, WANG Hao, LIAO Xiaokang, WU Wenyi, RAN Le. Compound Fault Diagnosis Method Guided by Variational Mode Decomposition for Wheelsets and Bearings[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 151-159. doi: 10.3969/j.issn.0258-2724.20211088
Citation: YI Cai, LIN Jianhui, WANG Hao, LIAO Xiaokang, WU Wenyi, RAN Le. Compound Fault Diagnosis Method Guided by Variational Mode Decomposition for Wheelsets and Bearings[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 151-159. doi: 10.3969/j.issn.0258-2724.20211088

VMD引导的轮对与轴承复合故障诊断方法

doi: 10.3969/j.issn.0258-2724.20211088
基金项目: 国家自然科学基金(51905453);中国博士后科学基金(2019M663899XB)
详细信息
    作者简介:

    易彩(1987—),女,助理研究员,研究方向为轨道交通车辆关键部件故障诊断技术,E-mail: yicai@swjtu.edu.cn

    通讯作者:

    林建辉(1964—),男,教授,研究方向为轨道交通运行安全监测与检测技术, E-mail: lin13008104673@126.com

  • 中图分类号: U279.323

Compound Fault Diagnosis Method Guided by Variational Mode Decomposition for Wheelsets and Bearings

  • 摘要:

    针对列车轮对轴承系统复合故障难以辨识与诊断问题,提出一种变分模态分解(variational mode decomposition, VMD)引导的多故障特征提取匹配方法. 首先,为避免预定义模式数在运行过程中对先验知识依赖从而对诊断结果造成影响,对原始轴箱振动数据进行逐阶VMD分解,模式数为2~N;其次,对VMD分解获取的本征模态函数(VMD intrinsic mode functions, VIMF)进行相关峭度计算,提取相关峭度最大的VIMF;然后,将相关峭度最大的VIMF进行平方包络分析,提取故障特征频率;最后,将所提方法与快速峭度谱、相关峭度谱方法进行对比. 仿真信号和试验数据分析表明:所提方法完全规避了VMD模型中关键参数K的选择问题,可以准确、有效地分别提取出轮对和轴承的故障特征;与快速谱峭度与相关谱峭度方法相比,获取的故障特征谐波分量在数量和信噪比上均具有明显优势.

     

  • 图 1  仿真信号

    Figure 1.  Waveform of simulation signals

    图 2  仿真信号频谱和包络谱

    Figure 2.  Spectrum and envelope spectrum of simulation signal

    图 3  仿真信号轴承外圈故障的VMD引导的相关峭度谱

    Figure 3.  VMD-guided correlation kurtosis spectrum of bearing outer-race fault for simulation signal

    图 4  仿真信号轴承外圈故障VIMF平方包络谱

    Figure 4.  VIMF square envelope spectrum of bearing outer-race fault for simulation signal

    图 5  仿真信号轮对踏面缺陷的VMD引导的相关峭度谱

    Figure 5.  VMD-guided correlation kurtosis spectrum of wheelset tread defect for simulation signal

    图 6  仿真信号轮对踏面缺陷VIMF平方包络谱

    Figure 6.  VIMF square envelope spectrum of wheelset tread defect for simulation signal

    图 7  仿真信号快速峭度谱

    Figure 7.  Fast kurtosis spectrum of simulation sigal

    图 8  仿真信号快速峭度谱最大峭度分量平方包络谱

    Figure 8.  Square envelope spectrum of sub-signal with maximum kurtosis for simulation signal

    图 9  仿真信号轴承外圈故障的相关峭度谱

    Figure 9.  Correlation kurtosis spectrum of bearing outer-race fault for simulation signal

    图 10  仿真信号轴承外圈故障最大相关峭度分量平方包络谱

    Figure 10.  Square envelope spectrum of the sub-signal with maximum correlation kurtosis of bearing outer-race fault for simulation signal

    图 11  仿真信号轮对踏面缺陷的相关峭度谱

    Figure 11.  Correlation kurtosis spectrum of wheelset tread defect for simulation signal

    图 12  仿真信号轮对踏面缺陷最大相关峭度分量平方包络谱

    Figure 12.  Square envelope spectrum of the sub-signal with maximum fast kurtosis of wheelset tread defect for simulation signal

    图 13  轮对跑合试验台

    Figure 13.  Running test bench of wheelset

    图 14  车轮踏面和轴承外圈损伤

    Figure 14.  Defects of wheel tread and bearing out-race

    图 15  试验台实测数据

    Figure 15.  Measured data in running test bench

    图 16  试验信号轴承外圈故障的VMD引导相关峭度谱

    Figure 16.  VMD-guided correlation kurtosis of bearing outer-race fault for measured signal

    图 17  试验信号轴承外圈故障VIMF波形及其平方包络谱

    Figure 17.  VIMF waveform and its square envelope spectrum of bearing outer-race fault for measured signal

    图 18  试验信号轮对踏面缺陷的VMD引导相关峭度谱

    Figure 18.  VDM-guided correlation kurtosis spectrum of wheelset tread defect for measured signal

    图 19  试验信号轮对踏面缺陷VIMF波形及其平方包络谱

    Figure 19.  VIMF waveform and its square envelope spectrum of wheelset tread defect for measured signal

    图 20  试验信号快速峭度谱

    Figure 20.  Fast kurtosis spectrum of simulation signal

    图 21  试验信号最大峭度分量平方包络谱

    Figure 21.  Square envelope spectrum of the sub-signal with maximum kurtosis for measured signal

    图 22  试验轴承外圈故障的相关峭度谱

    Figure 22.  Correlation kurtosis of bearing outer-race fault for measured signal

    图 23  试验信号轴承外圈故障最大相关峭度分量平方包络谱

    Figure 23.  Square envelope spectrum of sub-signal with maximum fast kurtosis of bearing outer-race fault for measured signal

    图 24  试验信号轮对踏面缺陷的相关峭度谱

    Figure 24.  Correlation kurtosis spectrum of wheelset tread defect for measured signal

    图 25  试验信号轮对踏面缺陷最大相关峭度分量平方包络谱

    Figure 25.  Square envelope spectrum of the sub-signal with maximum fast kurtosis of wheelset tread defect formeasured signal

    表  1  仿真信号参数设置

    Table  1.   Parameter description of simulation signals

    类型振幅结构阻尼系数激振周期随机系数
    轴承1100035001/83.30.01Tb
    轮对故障8200010001/10.290.01Tw
    随机冲击响应1010002000
    下载: 导出CSV
  • [1] 刘志亮,潘登,左明健,等. 轨道车辆故障诊断研究进展[J]. 机械工程学报,2016,52(14): 134-146. doi: 10.3901/JME.2016.14.134

    LIU Zhiliang, PAN Deng, ZUO Mingjian, et al. A review on fault diagnosis for rail vehicles[J]. Journal of Mechanical Engineering, 2016, 52(14): 134-146. doi: 10.3901/JME.2016.14.134
    [2] 赵聪聪,刘玉梅,赵颖慧,等. 基于物元-阴性选择算法的轴箱轴承故障检测[J]. 西南交通大学学报,2021,56(5): 973-980.

    ZHAO Congcong, LIU Yumei, ZHAO Yinghui, et al. Fault detection of axle box bearing based on matter-element and negative selection algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 973-980.
    [3] 刘国云,曾京,罗仁,等. 轴箱轴承缺陷状态下的高速车辆振动特性分析[J]. 振动与冲击,2016,35(9): 37-42,51. doi: 10.13465/j.cnki.jvs.2016.09.007

    LIU Guoyun, ZENG Jing, LUO Ren, et al. Vibration performance of high-speed vehicles with axle box bearing defects[J]. Journal of Vibration and Shock, 2016, 35(9): 37-42,51. doi: 10.13465/j.cnki.jvs.2016.09.007
    [4] LIU Z C, YANG S P, LIU Y Q, et al. Adaptive correlated Kurtogram and its applications in wheelset-bearing system fault diagnosis[J]. Mechanical Systems and Signal Processing, 2021, 154: 107511.1-107511.21.
    [5] XING Z, YI C, LIN J H, et al. Multi-component fault diagnosis of wheelset-bearing using shift-invariant impulsive dictionary matching pursuit and sparrow search algorithm[J]. Measurement, 2021, 178: 109375.1-109375.17.
    [6] WANG D, ZHAO Y, YI C, et al. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2018, 101: 292-308. doi: 10.1016/j.ymssp.2017.08.038
    [7] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [8] 黄衍,林建辉,刘泽潮,等. 基于自适应VMD的高速列车轴箱轴承故障诊断[J]. 振动与冲击,2021,40(3): 240-245. doi: 10.13465/j.cnki.jvs.2021.03.032

    HUANG Yan, LIN Jianhui, LIU Zechao, et al. Fault diagnosis of axle box bearing of high-speed train based on adaptive VMD[J]. Journal of Vibration and Shock, 2021, 40(3): 240-245. doi: 10.13465/j.cnki.jvs.2021.03.032
    [9] YI C, LI Y Q, HUO X M, et al. A promising new tool for fault diagnosis of railway wheelset bearings: SSO-based Kurtogram[J]. ISA Transactions, 2021, 128: 498-512.
    [10] MIAO Y H, ZHAO M, LIN J. Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification[J]. Measurement Science and Technology, 2017, 28(12): 125001.1-125001.14.
    [11] BOZCHALOOI I S, LIANG M. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Journal of Sound and Vibration, 2007, 308(1/2): 246-267.
    [12] WANG D. Spectral L2/L1 norm: a new perspective for spectral kurtosis for characterizing non-stationary signals[J]. Mechanical Systems and Signal Processing, 2018, 104: 290-293. doi: 10.1016/j.ymssp.2017.11.013
    [13] MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255. doi: 10.1016/j.ymssp.2012.06.010
    [14] 夏茂森,江玲玲. 变分模态分解模型中关键参数K的辨识研究: 基于加权最大信息系数法[J]. 统计与信息论坛,2021,36(2): 23-35.

    XIA Maosen, JIANG Lingling. Research on identification of key parameter K in variational mode decomposition model: based on weighted maximum information coefficient method[J]. Journal of Statistics and Information, 2021, 36(2): 23-35.
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  127
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-05-20
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2022-05-27

目录

    /

    返回文章
    返回