Compound Fault Diagnosis Method Guided by Variational Mode Decomposition for Wheelsets and Bearings
-
摘要:
针对列车轮对轴承系统复合故障难以辨识与诊断问题,提出一种变分模态分解(variational mode decomposition, VMD)引导的多故障特征提取匹配方法. 首先,为避免预定义模式数在运行过程中对先验知识依赖从而对诊断结果造成影响,对原始轴箱振动数据进行逐阶VMD分解,模式数为2~
N ;其次,对VMD分解获取的本征模态函数(VMD intrinsic mode functions, VIMF)进行相关峭度计算,提取相关峭度最大的VIMF;然后,将相关峭度最大的VIMF进行平方包络分析,提取故障特征频率;最后,将所提方法与快速峭度谱、相关峭度谱方法进行对比. 仿真信号和试验数据分析表明:所提方法完全规避了VMD模型中关键参数K 的选择问题,可以准确、有效地分别提取出轮对和轴承的故障特征;与快速谱峭度与相关谱峭度方法相比,获取的故障特征谐波分量在数量和信噪比上均具有明显优势.Abstract:A multi-fault feature extraction and matching method guided by variational mode decomposition (VMD) was proposed to address the difficulty in identifying and diagnosing composite faults in train wheelset bearing systems. Firstly, in order to avoid the pre-defined mode number relying on prior knowledge during operation and thus affecting the diagnosis results, the original axle-box vibration data are directly decomposed by VMD step by step, and the number of modes is 2–
N . Secondly, the VMD intrinsic mode functions (VIMF) obtained by VMD are calculated to extract the VIMF with the largest correlation kurtosis; then, the determined VIMF is analyzed by square envelope analysis to extract the fault feature frequency. Finally, the proposed method is compared with the fast spectral Kurtogram method and the correlation Kurtogram method. The analysis of simulation signals and experimental data shows that the proposed method can completely avoids the problem of selecting the key parameterK in the VMD model, and can accurately and effectively extract the fault characteristics of wheelsets and bearings, respectively. Compared with the fast spectral Kurtogram method and the correlation Kurtogram method the proposed method can diagnose compound faults effectively, and the obtained fault feature harmonic components are more advantageous in quantity and signal-to-noise ratio. -
表 1 仿真信号参数设置
Table 1. Parameter description of simulation signals
类型 振幅 结构阻尼系数 激振 周期 随机系数 轴承 1 1000 3500 1/83.3 0.01Tb 轮对故障 8 2000 1000 1/10.29 0.01Tw 随机冲击响应 10 1000 2000 -
[1] 刘志亮,潘登,左明健,等. 轨道车辆故障诊断研究进展[J]. 机械工程学报,2016,52(14): 134-146. doi: 10.3901/JME.2016.14.134LIU Zhiliang, PAN Deng, ZUO Mingjian, et al. A review on fault diagnosis for rail vehicles[J]. Journal of Mechanical Engineering, 2016, 52(14): 134-146. doi: 10.3901/JME.2016.14.134 [2] 赵聪聪,刘玉梅,赵颖慧,等. 基于物元-阴性选择算法的轴箱轴承故障检测[J]. 西南交通大学学报,2021,56(5): 973-980.ZHAO Congcong, LIU Yumei, ZHAO Yinghui, et al. Fault detection of axle box bearing based on matter-element and negative selection algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 973-980. [3] 刘国云,曾京,罗仁,等. 轴箱轴承缺陷状态下的高速车辆振动特性分析[J]. 振动与冲击,2016,35(9): 37-42,51. doi: 10.13465/j.cnki.jvs.2016.09.007LIU Guoyun, ZENG Jing, LUO Ren, et al. Vibration performance of high-speed vehicles with axle box bearing defects[J]. Journal of Vibration and Shock, 2016, 35(9): 37-42,51. doi: 10.13465/j.cnki.jvs.2016.09.007 [4] LIU Z C, YANG S P, LIU Y Q, et al. Adaptive correlated Kurtogram and its applications in wheelset-bearing system fault diagnosis[J]. Mechanical Systems and Signal Processing, 2021, 154: 107511.1-107511.21. [5] XING Z, YI C, LIN J H, et al. Multi-component fault diagnosis of wheelset-bearing using shift-invariant impulsive dictionary matching pursuit and sparrow search algorithm[J]. Measurement, 2021, 178: 109375.1-109375.17. [6] WANG D, ZHAO Y, YI C, et al. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2018, 101: 292-308. doi: 10.1016/j.ymssp.2017.08.038 [7] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675 [8] 黄衍,林建辉,刘泽潮,等. 基于自适应VMD的高速列车轴箱轴承故障诊断[J]. 振动与冲击,2021,40(3): 240-245. doi: 10.13465/j.cnki.jvs.2021.03.032HUANG Yan, LIN Jianhui, LIU Zechao, et al. Fault diagnosis of axle box bearing of high-speed train based on adaptive VMD[J]. Journal of Vibration and Shock, 2021, 40(3): 240-245. doi: 10.13465/j.cnki.jvs.2021.03.032 [9] YI C, LI Y Q, HUO X M, et al. A promising new tool for fault diagnosis of railway wheelset bearings: SSO-based Kurtogram[J]. ISA Transactions, 2021, 128: 498-512. [10] MIAO Y H, ZHAO M, LIN J. Improvement of kurtosis-guided-grams via Gini index for bearing fault feature identification[J]. Measurement Science and Technology, 2017, 28(12): 125001.1-125001.14. [11] BOZCHALOOI I S, LIANG M. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Journal of Sound and Vibration, 2007, 308(1/2): 246-267. [12] WANG D. Spectral L2/L1 norm: a new perspective for spectral kurtosis for characterizing non-stationary signals[J]. Mechanical Systems and Signal Processing, 2018, 104: 290-293. doi: 10.1016/j.ymssp.2017.11.013 [13] MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255. doi: 10.1016/j.ymssp.2012.06.010 [14] 夏茂森,江玲玲. 变分模态分解模型中关键参数K的辨识研究: 基于加权最大信息系数法[J]. 统计与信息论坛,2021,36(2): 23-35.XIA Maosen, JIANG Lingling. Research on identification of key parameter K in variational mode decomposition model: based on weighted maximum information coefficient method[J]. Journal of Statistics and Information, 2021, 36(2): 23-35.