• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于轴箱高频振动的车轮不圆辨识方法研究

魏来 曾京 高浩 屈升 孙熠

魏来, 曾京, 高浩, 屈升, 孙熠. 基于轴箱高频振动的车轮不圆辨识方法研究[J]. 西南交通大学学报, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085
引用本文: 魏来, 曾京, 高浩, 屈升, 孙熠. 基于轴箱高频振动的车轮不圆辨识方法研究[J]. 西南交通大学学报, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085
WEI Lai, ZENG Jing, GAO Hao, QU Sheng, SUN Yi. Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085
Citation: WEI Lai, ZENG Jing, GAO Hao, QU Sheng, SUN Yi. Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085

基于轴箱高频振动的车轮不圆辨识方法研究

doi: 10.3969/j.issn.0258-2724.20211085
基金项目: 国家自然科学基金(52002344,61960206010);四川省自然科学基金(2022NSFSC1869)
详细信息
    作者简介:

    魏来(1989—),男, 助理研究员,研究方向为车辆动力学, E-mail: future@swjtu.edu.cn

  • 中图分类号: U271.91;U270.7

Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations

  • 摘要:

    为实现对高速列车车轮高阶不圆的实时检测,研究了轴箱高频振动与车轮不圆的频谱特征和映射关系,采用频域积分方法对车轮不圆的幅值和阶次进行辨识. 首先,通过静态测试和台架试验,研究我国高速铁路车轮多边形、钢轨波磨和轨道模态的表现形式;其次,通过高速列车长期服役性能跟踪试验,掌握转向架轴箱振动的时频特征和演化规律;最后,以现场出现车轮20阶多边形的车辆为研究对象,提出基于频域积分的车轮不圆阶次和幅值辨识方法. 研究结果表明:CRTS-Ⅱ型轨道板钢轨三阶弯曲频率为592 Hz;列车以300 km/h运行时,20阶车轮多边形和136 mm波长钢轨波磨的响应频率分别为580 Hz和613 Hz;钢轨模态、车轮多边形以及钢轨波磨的振动主频较为集中,轴箱高频振动幅值随车速和镟后里程的增大而增大;采用加速度频域积分方法,从理论上可实现对车轮不圆幅值和阶次的辨识;基于线路实测轴箱加速度的20阶车轮多边形辨识结果与静态测试值相对误差不超过5%.

     

  • 图 1  高速列车典型车轮多边形磨耗特征

    Figure 1.  Wear characteristics of typical wheel polygonisation for high speed trains

    图 2  高速铁路典型钢轨波磨特征

    Figure 2.  Wear characteristics of typical rail corrugation for high-speed lines

    图 3  轨道结构模态测试

    Figure 3.  Modal test of the track structure

    图 4  测试设备

    Figure 4.  Test instrument

    图 5  车轮多边形激励下高速列车轴箱垂向加速度

    Figure 5.  Vertical accelerations of axlebox for high-speed train under wheel polygonization excitations

    图 6  车轮多边形激励下高速列车轴箱垂向振动频谱图

    Figure 6.  Frequency spectrum of axlebox for high-speed train under wheel polygonization excitations

    图 7  不同走行里程下高速列车轴箱垂向振动频率演化规律

    Figure 7.  Evolution of vertical vibration frequency of axlebox for high-speed train at different running mileages

    图 8  仿真信号和识别信号的对比

    Figure 8.  Comparison of simulated and identified signals

    图 9  基于仿真信号的车轮不圆辨识结果

    Figure 9.  Results of wheel OOR identification based on simulated signals

    图 10  车轮不圆辨识方法流程

    Figure 10.  Flow chart of wheel OOR identification approach

    图 11  基于实测轴箱振动加速度的车轮不圆辨识结果

    Figure 11.  Results of wheel OOR identification based on measured axlebox accelerations

    图 12  车轮粗糙度与阶次的实测值和辨识值对比

    Figure 12.  Comparison of measured and identified wheel roughness and OOR order

    表  1  仿真信号参数取值

    Table  1.   Parameter values of simulation signals

    类型k/Hz幅值/mm相位角/
    rad
    v/(km·h−1R/mm
    偏心 28.96 0.10 0 300 458
    激扰类型
    多边形
    579.17 0.02 0
    P2 力 40.00 0.05 0
    下载: 导出CSV
  • [1] TAO G Q, WEN Z F, JIN X S, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(4): 317-345. doi: 10.1007/s40534-020-00222-x
    [2] 金学松,吴越,梁树林,等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报,2020,56(16): 118-136. doi: 10.3901/JME.2020.16.118

    JIN Xuesong, WU Yue, LIANG Shulin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. doi: 10.3901/JME.2020.16.118
    [3] DAI H Y, LI D, WANG J, et al. Study on the mechanism of high order out of round roughness of high speed railway train’s wheel[C]//Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel System. Delft: CRC, 2018: 189-195.
    [4] WU X W, RAKHEJA S, CAI W B, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099
    [5] 姜子清,司道林,李伟,等. 高速铁路钢轨波磨研究[J]. 中国铁道科学,2014,35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02

    JIANG Ziqing, SI Daolin, LI Wei, et al. On rail corrugation of high speed railway[J]. China Railway Science, 2014, 35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02
    [6] 谷永磊,赵国堂,王衡禹,等. 轨道振动特性对高速铁路钢轨波磨的影响[J]. 中国铁道科学,2016,37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07

    GU Yonglei, ZHAO Guotang, WANG Hengyu, et al. Effect of track vibration characteristics on rail corrugation of high speed railway[J]. China Railway Science, 2016, 37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07
    [7] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [8] LIU X Y, ZHAI W M. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J]. Wear, 2014, 314(1/2): 282-290.
    [9] CHEN M, SUN Y, GUO Y, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 432/433: 102914.1-102914.9. doi: 10.1016/j.wear.2019.05.029
    [10] WU X W, CHI M R, WU P B. Influence of polygonal wear of railway wheels on the wheel set axle stress[J]. Vehicle System Dynamics, 2015, 53(11): 1535-1554. doi: 10.1080/00423114.2015.1063674
    [11] QU S, ZHU B, ZENG J, et al. Experimental investigation for wheel polygonisation of high-speed trains[J]. Vehicle System Dynamics, 2021, 59(10): 1573-1586. doi: 10.1080/00423114.2020.1772984
    [12] ZHANG J, HAN G X, XIAO X B, et al. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University–Science A (Applied Physics & Engineering), 2014: 1002-1018.
    [13] 王远,佟岩. 高速动车组车轮多边形对车内噪声的影响[J]. 噪声与振动控制,2018,38(1): 147-150. doi: 10.3969/j.issn.1006-1355.2018.01.029

    WANG Yuan, TONG Yan. Influence of polygonal wheels on interior noise of high-speed trains[J]. Noise and Vibration Control, 2018, 38(1): 147-150. doi: 10.3969/j.issn.1006-1355.2018.01.029
    [14] 徐磊,陈宪麦,徐伟昌,等. 基于小波和Wigner-Ville分布的轨道不平顺特征识别[J]. 中南大学学报(自然科学版),2013,44(8): 3344-3350.

    XU Lei, CHEN Xianmai, XU Weichang, et al. Explored of track irregularity’s characteristic identification based on wavelet method and Wigner-Ville distribution[J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3344-3350.
    [15] XIAO X, SUN Z, SHEN W A. A Kalman filter algorithm for identifying track irregularities of railway bridges using vehicle dynamic responses[J]. Mechanical Systems and Signal Processing, 2020, 138: 106582.1-106582.27. doi: 10.1016/j.ymssp.2019.106582
    [16] WESTEON P F, LING C S, ROBERTS C, et al. Monitoring vertical track irregularity from in-service railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 2007, 221(1): 75-88. doi: 10.1243/0954409JRRT65
    [17] MOLODOVA M, LI Z L, DOLLEVOET R. Axle box acceleration: measurement and simulation for detection of short track defects[J]. Wear, 2011, 271(1/2): 349-356.
  • 期刊类型引用(3)

    1. 李浩, 郝鹏毅, 齐福强, 李建钹, 史佳琦, 杨舒怡. 基于SABO-VMD-AR谱的车轮多边形阶数诊断算法. 铁道车辆. 2025(04) 百度学术
    2. 戴成昊, 许文天, 彭佳宁, 崔利通, 梁树林, 池茂儒. 基于Kriging代理模型的车轮多边形识别方法研究. 铁道标准设计. 2025(06) 百度学术
    3. 陈昊苓,张兵. 基于角域同步平均的高速列车车轮多边形检测方法. 机械. 2024(11): 23-32 . 百度学术

    其他类型引用(2)

  • 加载中
推荐阅读
基于srckf算法的轨道车辆轮轨垂向力识别
陈清华 等, 西南交通大学学报, 2025
监测数据驱动的城轨列车轴箱轴承剩余寿命预测
王彪 等, 西南交通大学学报, 2024
轮对升降速工况下短信号拼接定速信号的方法
张伟 等, 西南交通大学学报, 2024
基于车轨耦合的地铁车轮多边形形成机理
施以旋 等, 西南交通大学学报, 2024
外部冲击载荷作用下的动车组列车轴箱轴承疲劳寿命评估方法
刘煜炜 等, 轴承, 2025
高速列车轴箱轴承低频波动载荷加载装置
侯宇 等, 轴承, 2025
高速电主轴系统振动特性和精度可靠性分析
黄贤振 等, 吉林大学学报, 2024
Mapping the conceptual structure of innovation in artificial intelligence research: a bibliometric analysis and systematic literature review
Obreja, Dragos M., JOURNAL OF INNOVATION & KNOWLEDGE, 2024
Variable filtered-waveform variational mode decomposition and its application in rolling bearing fault feature extraction
ENTROPY, 2025
Weak time-varying fault indicator detection of the complex gearbox via the meshing order modulation-aided scaling reassigning chirplet transform
APPLIED ACOUSTICS, 2025
Powered by
图(12) / 表(1)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  299
  • PDF下载量:  98
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-04-26
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2022-05-07

目录

    /

    返回文章
    返回