• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于轴箱高频振动的车轮不圆辨识方法研究

魏来 曾京 高浩 屈升 孙熠

魏来, 曾京, 高浩, 屈升, 孙熠. 基于轴箱高频振动的车轮不圆辨识方法研究[J]. 西南交通大学学报, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085
引用本文: 魏来, 曾京, 高浩, 屈升, 孙熠. 基于轴箱高频振动的车轮不圆辨识方法研究[J]. 西南交通大学学报, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085
WEI Lai, ZENG Jing, GAO Hao, QU Sheng, SUN Yi. Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085
Citation: WEI Lai, ZENG Jing, GAO Hao, QU Sheng, SUN Yi. Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations[J]. Journal of Southwest Jiaotong University, 2024, 59(1): 211-219. doi: 10.3969/j.issn.0258-2724.20211085

基于轴箱高频振动的车轮不圆辨识方法研究

doi: 10.3969/j.issn.0258-2724.20211085
基金项目: 国家自然科学基金(52002344,61960206010);四川省自然科学基金(2022NSFSC1869)
详细信息
    作者简介:

    魏来(1989—),男, 助理研究员,研究方向为车辆动力学, E-mail: future@swjtu.edu.cn

  • 中图分类号: U271.91;U270.7

Wheel Out-of-Roundness Identification Approach Based on Axlebox High-Frequency Vibrations

  • 摘要:

    为实现对高速列车车轮高阶不圆的实时检测,研究了轴箱高频振动与车轮不圆的频谱特征和映射关系,采用频域积分方法对车轮不圆的幅值和阶次进行辨识. 首先,通过静态测试和台架试验,研究我国高速铁路车轮多边形、钢轨波磨和轨道模态的表现形式;其次,通过高速列车长期服役性能跟踪试验,掌握转向架轴箱振动的时频特征和演化规律;最后,以现场出现车轮20阶多边形的车辆为研究对象,提出基于频域积分的车轮不圆阶次和幅值辨识方法. 研究结果表明:CRTS-Ⅱ型轨道板钢轨三阶弯曲频率为592 Hz;列车以300 km/h运行时,20阶车轮多边形和136 mm波长钢轨波磨的响应频率分别为580 Hz和613 Hz;钢轨模态、车轮多边形以及钢轨波磨的振动主频较为集中,轴箱高频振动幅值随车速和镟后里程的增大而增大;采用加速度频域积分方法,从理论上可实现对车轮不圆幅值和阶次的辨识;基于线路实测轴箱加速度的20阶车轮多边形辨识结果与静态测试值相对误差不超过5%.

     

  • 图 1  高速列车典型车轮多边形磨耗特征

    Figure 1.  Wear characteristics of typical wheel polygonisation for high speed trains

    图 2  高速铁路典型钢轨波磨特征

    Figure 2.  Wear characteristics of typical rail corrugation for high-speed lines

    图 3  轨道结构模态测试

    Figure 3.  Modal test of the track structure

    图 4  测试设备

    Figure 4.  Test instrument

    图 5  车轮多边形激励下高速列车轴箱垂向加速度

    Figure 5.  Vertical accelerations of axlebox for high-speed train under wheel polygonization excitations

    图 6  车轮多边形激励下高速列车轴箱垂向振动频谱图

    Figure 6.  Frequency spectrum of axlebox for high-speed train under wheel polygonization excitations

    图 7  不同走行里程下高速列车轴箱垂向振动频率演化规律

    Figure 7.  Evolution of vertical vibration frequency of axlebox for high-speed train at different running mileages

    图 8  仿真信号和识别信号的对比

    Figure 8.  Comparison of simulated and identified signals

    图 9  基于仿真信号的车轮不圆辨识结果

    Figure 9.  Results of wheel OOR identification based on simulated signals

    图 10  车轮不圆辨识方法流程

    Figure 10.  Flow chart of wheel OOR identification approach

    图 11  基于实测轴箱振动加速度的车轮不圆辨识结果

    Figure 11.  Results of wheel OOR identification based on measured axlebox accelerations

    图 12  车轮粗糙度与阶次的实测值和辨识值对比

    Figure 12.  Comparison of measured and identified wheel roughness and OOR order

    表  1  仿真信号参数取值

    Table  1.   Parameter values of simulation signals

    类型k/Hz幅值/mm相位角/
    rad
    v/(km·h−1R/mm
    偏心 28.96 0.10 0 300 458
    激扰类型
    多边形
    579.17 0.02 0
    P2 力 40.00 0.05 0
    下载: 导出CSV
  • [1] TAO G Q, WEN Z F, JIN X S, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(4): 317-345. doi: 10.1007/s40534-020-00222-x
    [2] 金学松,吴越,梁树林,等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报,2020,56(16): 118-136. doi: 10.3901/JME.2020.16.118

    JIN Xuesong, WU Yue, LIANG Shulin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. doi: 10.3901/JME.2020.16.118
    [3] DAI H Y, LI D, WANG J, et al. Study on the mechanism of high order out of round roughness of high speed railway train’s wheel[C]//Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel System. Delft: CRC, 2018: 189-195.
    [4] WU X W, RAKHEJA S, CAI W B, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099
    [5] 姜子清,司道林,李伟,等. 高速铁路钢轨波磨研究[J]. 中国铁道科学,2014,35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02

    JIANG Ziqing, SI Daolin, LI Wei, et al. On rail corrugation of high speed railway[J]. China Railway Science, 2014, 35(4): 9-14. doi: 10.3969/j.issn.1001-4632.2014.04.02
    [6] 谷永磊,赵国堂,王衡禹,等. 轨道振动特性对高速铁路钢轨波磨的影响[J]. 中国铁道科学,2016,37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07

    GU Yonglei, ZHAO Guotang, WANG Hengyu, et al. Effect of track vibration characteristics on rail corrugation of high speed railway[J]. China Railway Science, 2016, 37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07
    [7] GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [8] LIU X Y, ZHAI W M. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J]. Wear, 2014, 314(1/2): 282-290.
    [9] CHEN M, SUN Y, GUO Y, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 432/433: 102914.1-102914.9. doi: 10.1016/j.wear.2019.05.029
    [10] WU X W, CHI M R, WU P B. Influence of polygonal wear of railway wheels on the wheel set axle stress[J]. Vehicle System Dynamics, 2015, 53(11): 1535-1554. doi: 10.1080/00423114.2015.1063674
    [11] QU S, ZHU B, ZENG J, et al. Experimental investigation for wheel polygonisation of high-speed trains[J]. Vehicle System Dynamics, 2021, 59(10): 1573-1586. doi: 10.1080/00423114.2020.1772984
    [12] ZHANG J, HAN G X, XIAO X B, et al. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University–Science A (Applied Physics & Engineering), 2014: 1002-1018.
    [13] 王远,佟岩. 高速动车组车轮多边形对车内噪声的影响[J]. 噪声与振动控制,2018,38(1): 147-150. doi: 10.3969/j.issn.1006-1355.2018.01.029

    WANG Yuan, TONG Yan. Influence of polygonal wheels on interior noise of high-speed trains[J]. Noise and Vibration Control, 2018, 38(1): 147-150. doi: 10.3969/j.issn.1006-1355.2018.01.029
    [14] 徐磊,陈宪麦,徐伟昌,等. 基于小波和Wigner-Ville分布的轨道不平顺特征识别[J]. 中南大学学报(自然科学版),2013,44(8): 3344-3350.

    XU Lei, CHEN Xianmai, XU Weichang, et al. Explored of track irregularity’s characteristic identification based on wavelet method and Wigner-Ville distribution[J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3344-3350.
    [15] XIAO X, SUN Z, SHEN W A. A Kalman filter algorithm for identifying track irregularities of railway bridges using vehicle dynamic responses[J]. Mechanical Systems and Signal Processing, 2020, 138: 106582.1-106582.27. doi: 10.1016/j.ymssp.2019.106582
    [16] WESTEON P F, LING C S, ROBERTS C, et al. Monitoring vertical track irregularity from in-service railway vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail and Rapid Transit, 2007, 221(1): 75-88. doi: 10.1243/0954409JRRT65
    [17] MOLODOVA M, LI Z L, DOLLEVOET R. Axle box acceleration: measurement and simulation for detection of short track defects[J]. Wear, 2011, 271(1/2): 349-356.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  564
  • HTML全文浏览量:  139
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 修回日期:  2022-04-26
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2022-05-07

目录

    /

    返回文章
    返回