• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑残余强度的层状岩体损伤演化规律

寇昊 何川 陈子全 周子寒 蒙伟 肖龙鸽

寇昊, 何川, 陈子全, 周子寒, 蒙伟, 肖龙鸽. 考虑残余强度的层状岩体损伤演化规律[J]. 西南交通大学学报, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083
引用本文: 寇昊, 何川, 陈子全, 周子寒, 蒙伟, 肖龙鸽. 考虑残余强度的层状岩体损伤演化规律[J]. 西南交通大学学报, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083
KOU Hao, HE Chuan, CHEN Ziquan, ZHOU Zihan, MENG Wei, XIAO Longge. Damage Evolution Law of Layered Rock Mass Considering Residual Strength[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083
Citation: KOU Hao, HE Chuan, CHEN Ziquan, ZHOU Zihan, MENG Wei, XIAO Longge. Damage Evolution Law of Layered Rock Mass Considering Residual Strength[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1064-1072. doi: 10.3969/j.issn.0258-2724.20211083

考虑残余强度的层状岩体损伤演化规律

doi: 10.3969/j.issn.0258-2724.20211083
基金项目: 四川省科技计划(2021YJ0539);中建股份科技研发计划(CSCEC-2021-Z-26);四川省交通运输科技项目(2021-B-01);中央高校基本科研业务费专项资金(2682021CX013)
详细信息
    作者简介:

    寇昊(1992—),男,博士研究生,研究方向为隧道与地下工程,E-mail:kouhaoyanan@163.com

    通讯作者:

    陈子全(1989—),男,讲师,研究方向为隧道与地下工程,E-mail:chen_ziquan@163.com

  • 中图分类号: TU45

Damage Evolution Law of Layered Rock Mass Considering Residual Strength

  • 摘要:

    为更加真实准确地描述层状岩体的损伤演化过程,结合横观各向同性材料的弹性理论和损伤力学理论,采用修正的Lemaitre应变等价假设,建立了考虑残余强度的层状岩体损伤本构模型,通过页岩、千枚岩和板岩的三轴试验数据验证了模型的准确性,并分析了不同层理角度岩体的全过程损伤演化规律. 研究表明:模型既可以描述层状岩体的弹性变形,又可以较好地反映峰后应变软化过程;在初期加载过程中岩体的损伤值基本为0,随着应力增加,损伤值呈现出缓慢增长、加速增长、减速增长以及达到残余强度后稳定于1;页岩层理角度为60° 时损伤演化曲线最陡,损伤发展速度最快,最先破坏,千枚岩层厚较薄,强度更低,层理角度为90° 时最先破坏,而板岩相对较厚,强度更高,层理角度为45° 时最先破坏;岩体层理弱面的存在,导致了力学性能和破坏模式的各向异性,损伤演化规律也表现出明显的差异性.

     

  • 图 1  横观各向同性材料坐标示意

    Figure 1.  Diagram of coordinate system for the transversely isotropic materials

    图 2  圆柱体试件示意

    Figure 2.  Schematic diagram of cylinder rock

    图 3  考虑残余强度与不考虑残余强度对比

    Figure 3.  Comparison between the considered and unconsidered residual strengths

    图 4  弹性模量的理论值与试验值对比

    Figure 4.  Comparison between theoretical and experimental values of elastic modulus

    图 5  页岩应力-应变关系的理论值与试验值对比

    Figure 5.  Comparison between theoretical and experimental values of stress-strain curves for shale

    图 6  千枚岩、板岩应力-应变关系的理论值与试验值对比

    Figure 6.  Comparison between theoretical and experimental values of stress-strain curves for phyllite and slate

    图 7  页岩的损伤演化曲线

    Figure 7.  Damage evolution curves of shale

    图 8  千枚岩、板岩的损伤演化曲线

    Figure 8.  Damage evolution curves of phyllite and slate

    表  1  页岩三轴压缩试验的主要参数[21]

    Table  1.   Main parameters of triaxial compression test for shale [21]

    围压/MPa层理角度/(°)峰值应力/MPa峰值应变/%弹性模量/GPa残余强度/MPamε0/%
    00120.870.89114.07117.115.4760.965
    30108.630.68716.6795.814.9290.720
    6047.180.23820.5335.311.1630.275
    90124.070.52524.61103.317.3740.569
    100152.760.96119.50114.95.4631.190
    30142.620.71024.1099.56.1810.901
    6080.020.28234.1038.57.0130.342
    90147.290.42246.6483.43.2910.513
    200173.871.04220.5299.15.7701.242
    30153.050.75125.5775.25.1480.925
    60102.590.39533.9364.710.1590.450
    90204.140.48554.13132.73.8410.563
    300191.471.09421.50125.55.7201.300
    30180.170.87225.5796.76.9791.051
    60144.110.41641.0579.611.6820.479
    90227.500.58456.60138.92.5760.684
    下载: 导出CSV

    表  2  千枚岩、板岩三轴压缩试验的主要参数[22-23]σ3=10 MPa)

    Table  2.   Main parameters of triaxial compression test for phyllite and slate [22-23]σ3 = 10 MPa)

    岩性层理角度/(°)峰值应力/MPa峰值应变/%弹性模量/GPa残余强度/MPamε0/%
    千枚岩[22]069.290.48915.740.020.7260.547
    3051.550.45914.436.04.6420.539
    4553.390.36216.733.514.4870.412
    9095.460.21755.068.04.8480.253
    板岩[23]0154.190.82020.049.042.8960.887
    15111.410.59020.567.529.3270.644
    3070.260.38420.645.022.8030.425
    4555.820.26723.530.050.0780.285
    6087.260.34930.051.08.2120.415
    75121.250.40034.5100.010.8820.443
    90170.350.48742.087.017.0380.505
    下载: 导出CSV
  • [1] 吴永胜,谭忠盛,喻渝,等. 川西北茂县群千枚岩各向异性力学特性[J]. 岩土力学,2018,39(1): 207-215.

    WU Yongsheng, TAN Zhongsheng, YU Yu, et al. Anisotropically mechanical characteristics of Maoxian group phyllite in northwest of Sichuan province[J]. Rock and Soil Mechanics, 2018, 39(1): 207-215.
    [2] 陈子全,何川,吴迪,等. 高地应力层状软岩隧道大变形预测分级研究[J]. 西南交通大学学报,2018,53(6): 1237-1244. doi: 10.3969/j.issn.0258-2724.2018.06.020

    CHEN Ziquan, HE Chuan, WU Di, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244. doi: 10.3969/j.issn.0258-2724.2018.06.020
    [3] 刘运思,王世鸣,郭志广,等. 横观各向同性岩体内时损伤本构模型研究[J]. 铁道科学与工程学报,2017,14(7): 1407-1414. doi: 10.3969/j.issn.1672-7029.2017.07.009

    LIU Yunsi, WANG Shiming, GUO Zhiguang, et al. Endchronic damage constitutive model of transversely isotropic rock[J]. Journal of Railway Science and Engineering, 2017, 14(7): 1407-1414. doi: 10.3969/j.issn.1672-7029.2017.07.009
    [4] 史越,傅鹤林,伍毅敏,等. 层状岩石单轴压缩损伤本构模型研究[J]. 华中科技大学学报(自然科学版),2020,48(9): 126-132.

    SHI Yue, FU Helin, WU Yimin, et al. Study on damage constitutive model of layered rock under uniaxial compression[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2020, 48(9): 126-132.
    [5] WANG Z, ZONG Z, QIAO L, et al. Elastoplastic model for transversely isotropic rocks[J]. International Journal of Geomechanics, 2018, 18(2): 04017149.1-04017149.15.
    [6] SAROGLOU H, TSIAMBAOS G. A modified Hoek-Brown failure criterion for anisotropic intact rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 223-234. doi: 10.1016/j.ijrmms.2007.05.004
    [7] SHI X C, YANG X, MENG Y F, et al. Modified Hoek-Brown failure criterion for anisotropic rocks[J]. Environmental Earth Sciences, 2016, 75(11): 1-11.
    [8] LI K H, YIN Z Y, HAN D Y, et al. Size effect and anisotropy in a transversely isotropic rock under compressive conditions[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4639-4662. doi: 10.1007/s00603-021-02558-0
    [9] POURAGHA M, EGHBALIAN M, WAN R. Micromechanical correlation between elasticity and strength characteristics of anisotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 125: 104154.1-104154.8.
    [10] GHOLAMI R, RASOULI V. Mechanical and elastic properties of transversely isotropic slate[J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1763-1773. doi: 10.1007/s00603-013-0488-2
    [11] 衡帅,杨春和,张保平,等. 页岩各向异性特征的试验研究[J]. 岩土力学,2015,36(3): 609-616.

    HENG Shuai, YANG Chunhe, ZHANG Baoping, et al. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609-616.
    [12] 储超群,吴顺川,张诗淮,等. 层状砂岩力学行为各向异性与破裂特征[J]. 中南大学学报(自然科学版),2020,51(8): 2232-2246.

    CHU Chaoqun, WU Shunchuan, ZHANG Shihuai, et al. Mechanical behavior anisotropy and fracture characteristics of bedded sandstone[J]. Journal of Central South University (Science and Technology), 2020, 51(8): 2232-2246.
    [13] 邓华锋,王伟,李建林,等. 层状砂岩各向异性力学特性试验研究[J]. 岩石力学与工程学报,2018,37(1): 112-120.

    DENG Huafeng, WANG Wei, LI Jianlin, et al. Experimental study on anisotropic characteristics of bedded sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 112-120.
    [14] 邓华锋,李涛,李建林,等. 层状岩体各向异性声学和力学参数计算方法研究[J]. 岩石力学与工程学报,2020,39(增1): 2725-2732.

    DENG Huafeng, LI Tao, LI Jianlin, et al. Study on calculation method of anisotropic acoustic and mechanical parameters of layered rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2725-2732.
    [15] 陈子全,何川,吴迪,等. 深埋碳质千枚岩力学特性及其能量损伤演化机制[J]. 岩土力学,2018,39(2): 445-456.

    CHEN Ziquan, HE Chuan, WU Di, et al. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite[J]. Rock and Soil Mechanics, 2018, 39(2): 445-456.
    [16] 刘冬桥,王焯,张晓云. 岩石应变软化变形特性及损伤本构模型研究[J]. 岩土力学,2017,38(10): 2901-2908.

    LIU Dongqiao, WANG Zhuo, ZHANG Xiaoyun. Characteristics of strain softening of rocks and its damage constitutive model[J]. Rock and Soil Mechanics, 2017, 38(10): 2901-2908.
    [17] 温韬,唐辉明,马俊伟,等. 考虑初始损伤和残余强度的岩石变形过程模拟[J]. 地球科学,2019,44(2): 652-663.

    WEN Tao, TANG Huiming, MA Junwei, et al. Deformation simulation for rock in consideration of initial damage and residual strength[J]. Earth Science, 2019, 44(2): 652-663.
    [18] 曹文贵,赵衡,李翔,等. 基于残余强度变形阶段特征的岩石变形全过程统计损伤模拟方法[J]. 土木工程学报,2012,45(6): 139-145.

    CAO Wengui, ZHAO Heng, LI Xiang, et al. A statistical damage simulation method for rock full deformation process with consideration of the deformation characteristics of residual strength phase[J]. China Civil Engineering Journal, 2012, 45(6): 139-145.
    [19] 李海潮,张升. 基于修正Lemaitre应变等价性假设的岩石损伤模型[J]. 岩土力学,2017,38(5): 1321-1326, 1334.

    LI Haichao, ZHAGN Sheng. A constitutive damage model of rock based on the assumption of modified Lemaitre strain equivalence hypothesis[J]. Rock and Soil Mechanics, 2017, 38(5): 1321-1326, 1334.
    [20] 汪杰,宋卫东,付建新. 考虑节理倾角的岩体损伤本构模型及强度准则[J]. 岩石力学与工程学报,2018,37(10): 2253-2263.

    WANG Jie, SONG Weidong, FU Jianxin. A damage constitutive model and strength criterion of rock mass considering the dip angle of joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2253-2263.
    [21] 贾长贵,陈军海,郭印同,等. 层状页岩力学特性及其破坏模式研究[J]. 岩土力学,2013,34(增2): 57-61.

    JIA Changgui, CHEN Junhai, GUO Yintong, et al. Research on mechanical behaviors and failure modes of layer shale[J]. Rock and Soil Mechanics, 2013, 34(S2): 57-61.
    [22] 唐克东,王甲亮,管俊峰,等. 层状岩体在三轴加载下的扩容及塑性应变特性[J]. 水利学报,2021,52(1): 42-50.

    TANG Kedong, WANG Jialiang, GUAN Junfeng, et al. Dilatancy and plastic strain characteristics of layered rock mass under triaxial compressive test[J]. Journal of Hydraulic Engineering, 2021, 52(1): 42-50.
    [23] CHEN Y F, WEI K, LIU W, et al. Experimental characterization and micromechanical modelling of anisotropic slates[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3541-3557. doi: 10.1007/s00603-016-1009-x
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  102
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-04-21
  • 网络出版日期:  2023-05-19
  • 刊出日期:  2022-05-23

目录

    /

    返回文章
    返回