• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

雨天沥青路面能见度影响因素分析

汪敏 何兆益 周文 梁昕

汪敏, 何兆益, 周文, 梁昕. 雨天沥青路面能见度影响因素分析[J]. 西南交通大学学报, 2023, 58(6): 1286-1293. doi: 10.3969/j.issn.0258-2724.20211079
引用本文: 汪敏, 何兆益, 周文, 梁昕. 雨天沥青路面能见度影响因素分析[J]. 西南交通大学学报, 2023, 58(6): 1286-1293. doi: 10.3969/j.issn.0258-2724.20211079
WANG Min, HE Zhaoyi, ZHOU Wen, LIANG Xin. Influencing Factors of Asphalt Pavement Visibility on Rainy Days[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1286-1293. doi: 10.3969/j.issn.0258-2724.20211079
Citation: WANG Min, HE Zhaoyi, ZHOU Wen, LIANG Xin. Influencing Factors of Asphalt Pavement Visibility on Rainy Days[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1286-1293. doi: 10.3969/j.issn.0258-2724.20211079

雨天沥青路面能见度影响因素分析

doi: 10.3969/j.issn.0258-2724.20211079
基金项目: 国家自然科学基金(51978116);交通运输部行业重点科技资助项目(2018-TG-003)
详细信息
    作者简介:

    汪敏(1982—),男,讲师,博士研究生,研究方向为路面结构、交通安全技术,E-mail:738120908@qq.com

    通讯作者:

    何兆益(1965—),男,教授,博士生导师,研究方向为道路新材料、道路设计理论与方法、道路安全技术,E-mail:242143956@qq.com

  • 中图分类号: U416.217;TU997

Influencing Factors of Asphalt Pavement Visibility on Rainy Days

  • 摘要:

    在降雨情况下,汽车行驶过程轮胎所溅起的水花极易形成水雾,前方能见度会显著下降,人体主观的识别距离也随之迅速减小,甚至出现对行车间距的错误判断,易造成交通事故,研究雨天沥青路面能见度影响因素意义重大. 以米氏理论为基础,利用能见度的气象学定义,并采用MATLAB软件进行蒙特卡罗数值模拟,提出了用车速、水膜厚度和路面设计参数表征的能见度计算模型,进而对能见度影响因素进行了分析. 结果表明:在雨天,沥青路面水膜厚度低于5.873 mm时,水雾引起的能见度会随车速和水膜厚度增加而不断减小;路面设计参数中,排水路径长度、路面构造深度与能见度呈正相关性;路面坡度与能见度呈负相关性;在水膜厚度为5.873 mm时能见度达到极小值;进一步提出了用降雨强度、路面构造深度、路面坡度、排水路径长度和车速表征的沥青路面能见度改进计算模型.

     

  • 图 1  气象学表征能见度示意图

    Figure 1.  Meteorological characterization of visibility

    图 2  蒙特卡罗模拟光子多重散射示意

    Figure 2.  Monte Carlo simulation of photon multiple scattering

    图 3  能见度和行驶速度、水膜厚度之间关系

    Figure 3.  Relationship among visibility, vehicle speed, and water film thicknesses

    图 4  车速120 km/h时不同水膜厚度产生水雾能见度变化趋势

    Figure 4.  Variation trend of water mist visibility under different water film thicknesses at 120 km/h

    表  1  能见度数值模拟数据汇总表

    Table  1.   Summary of visibility numerical simulation data m

    水膜厚度/mm60 km/h70 km/h80 km/h90 km/h100 km/h110 km/h120 km/h
    0.050191.78189.35186.93184.73183.98184.45183.70
    0.100191.80189.20186.60184.20183.20183.40182.40
    0.200191.85188.90185.95183.15181.65181.30179.80
    0.500192.00188.00184.00180.00177.00175.00172.00
    1.000192.00185.00178.00171.00164.00157.00150.00
    1.500192.00184.00175.67167.00158.00149.00140.00
    2.000192.00183.00173.33163.00152.00141.00130.00
    2.500192.00182.00171.00159.00146.00133.00120.00
    3.000191.40179.80168.20155.8142.60129.40116.20
    4.000188.20175.40162.60149.400135.80122.20108.60
    5.000185.00171.00157.00143.00129.00115.00101.00
    下载: 导出CSV

    表  2  能见度状态划分标准

    Table  2.   Division standard of visibility state

    序号能见度
    距离/km
    技术标准
    1≥50.00能见度极好,视野清晰
    2[20.00,50.00)能见度好,视野较清晰
    3[10.00,20.00)能见度一般
    4[2.00,10.00)能见度较差,视野不清晰
    5[1.00,2.00)轻雾,能见度差,视野不清晰
    6[0.20,1.00)大雾,能见度很差
    7[0.05,0.20)重雾,能见度极差
    8< 0.05浓雾,能见度极差
    下载: 导出CSV

    表  3  不同车速下能见度与水膜厚度关系汇总

    Table  3.   Summary of functional relationship between visibility and water film at different vehicle speeds

    v/(km·h−1Vh 函数关系式R2
    60$ V=-0.536\;9{h}^{2} + 1.386\;7h + 191.52 $0.982
    70$V={189.74\mathrm{e} }^{-0.02h}$0.985
    80$V={186.5\mathrm{e} }^{-0.035h }$0.991
    90$V={183.3\mathrm{e} }^{-0.053h }$0.982
    100$V={181.02\mathrm{e} }^{-0.075h }$0.967
    110$V={179.71\mathrm{e} }^{-0.101h }$0.957
    120$V={177.63\mathrm{e} }^{-0.129h }$0.955
    下载: 导出CSV

    表  4  蒙特卡罗数值模拟能见度汇总

    Table  4.   Summary of Monte Carlo numerical simulation visibility m

    h/mmv/(km·h−1
    60708090100110120
    0.050191.78189.35186.93184.73183.98184.45183.70
    0.100191.80189.20186.60184.20183.20183.40182.40
    0.200191.85188.90185.95183.15181.65181.30179.80
    0.500192.00188.00184.00180.00177.00175.00172.00
    1.000192.00185.00178.00171.00164.00157.00150.00
    1.500192.00184.00175.67167.00158.00149.00140.00
    2.000192.00183.00173.33163.00152.00141.00130.00
    2.500192.00182.00171.00159.00146.00133.00120.00
    3.000191.40179.80168.20155.80142.60129.40116.20
    4.000188.20175.40162.60149.40135.80122.20108.60
    5.000185.00171.00157.00143.00129.00115.00101.00
    下载: 导出CSV

    表  5  能见度拟合多元非线性回归方程函数组合方式汇总

    Table  5.   Summary of combination methods of multiple nonlinear regression functions for visibility fitting

    编号f(h) 函数形式g(v) 函数形式V 的拟合方程
    1$D{h}^{2} + Eh + F$$D{h}^{2} + Eh + F$$V=A \left(D{h}^{2} + Eh + D\right) +B \left(D{h}^{2} + Eh + F\right) + C$
    2$D{h}^{2} + Eh + F$$G{ {\rm{e} } }^{v}$$V=A \left(D{h}^{2} + Eh + F\right) + BG { {\rm{e} } }^{v} + C$
    3$D{h}^{2} + Eh + F$$H\mathrm{ln}\;v$$V=A \left(D{h}^{2} + Eh + F\right) + BH \mathrm{ln}\;v + C$
    4$J{ {\rm{e} } }^{h}$$G{ {\rm{e} } }^{v}$$V=AJ { {\rm{e} } }^{h} + BG { {\rm{e} } }^{v} + C$
    5$J{ {\rm{e} } }^{h}$$H \mathrm{ln}\;v$$V=AJ { {\rm{e} } }^{h} + BH \mathrm{ln}\;v + C$
    6$J{ {\rm{e} } }^{h}$$D{h}^{2} + Eh + F$$V=AJ { {\rm{e} } }^{h} + B \left(D{h}^{2} + Eh + F\right) + C$
    7$K\mathrm{ln}\;h$$G{ {\rm{e} } }^{v}$$V=A K\mathrm{ln}\;h + BG { {\rm{e} } }^{v} + C$
    8$K\mathrm{ln}\;h$$H\mathrm{ln}\;v$$V=AK \mathrm{ln}\;h + BH \mathrm{ln}\;v + C$
    9$K\mathrm{ln}\;h$$D{h}^{2} + Eh + F$$V=AK \mathrm{ln}\;h + B \left(D{h}^{2} + Eh + F\right) + C$
    下载: 导出CSV

    表  6  第3种函数组合数学统计特征值表

    Table  6.   Statistical eigenvalues of the third function combination

    平方和自由度均方
    回归2194427.1004548606.8
    残差7402.17473101.4
    修正前总计2201829.20077
    修正后总计43037.03876
    下载: 导出CSV

    表  7  第3种函数组合参数估算值

    Table  7.   Estimated values of the third function combination parameters

    参数估算标准误差95% 置信区间
    下限上限
    A1.2750.4980.2832.267
    B−14.9772.406−19.771−10.182
    C−67.7974.985−77.732−57.861
    D490.39222.407445.735535.048
    下载: 导出CSV

    表  8  第3种函数组合参数估算值相关性

    Table  8.   Correlation of estimated values of the third function combination parameters

    参数BCAD
    B1.0000−0.954−0.071
    C01.0000−0.995
    A−0.95401.0000.056
    D−0.071−0.9950.0561.000
    下载: 导出CSV

    表  9  国内外水膜厚度预测模型汇总表

    Table  9.   Summary of water film thickness prediction models in China and abroad

    模型名称 模型形式 模型参数
    水膜
    厚度
    路径
    长度
    降雨
    强度
    路径
    坡度
    路面构造
    深度
    曼宁
    系数
    季天剑模型[17]$h=0.130\;6{l}^{0.722\;4}{i}^{0.303\;9}{q}^{0.772\;5}{ T_{\rm{TD} } }^{0.673\;0}$h/mml/mq/(mm·min−1i/%TTD/mm
    RRL 模型[18]$d=0.046 L^{0.47} I^{0.47} S^{-0.2} $d/mmL/mI/(mm·h−1S/%
    Gallaway 模型[19]$W_{\rm{WFT} }=0.0148\;5 { T_{\rm{TXD} } }^{0.11} L^{0.43} I^{0.59} S^{-0.42}-{T_ {\rm{TXD} } }$WWFT/mmL/mI/(mm·h−1S/%TTXD/mm
    Wambold 模型[20]$W_{\rm{WFT} }=0.005\;979 {T_{\rm{TXD} }}^{0.11} I^{0.59} S^{-0.42}-T_{\rm{TXD} }$WWFT/mmL/mI/(mm·h−1S/%TTXD/mm
    Anderson 模型[21]$d=0.15 L^{0.5} I^{0.5} S^{-0.5} $d/mmL/mI/(mm·h−1S/%
    VERT 模型[22]$W_{ {\rm{WD} } }=0.016\;405 L^{0.4} I^{0.4} {M_{\rm{MTD} } }^{0.4} S^{-0.3}$WWD/mmL/mI/(mm·h−1S/%MMTD/mm
    Chesterton 模型[23]$W_{\rm{WFT}}=0.046 L^{0.5} I^{0.5} S^{-0.2}-T$WWFT/mmL/mI/(mm·h−1S/%TTXD/mm
    NCHRP 模型[24]$W_{\rm{WFT} }=\left(\dfrac{n L I}{105.425 S^{0.5} }\right)^{0.6}-T$WWFT/mmL/mI/(mm·h−1S/%TTXD/mmn
    下载: 导出CSV
  • [1] 孙悦. 海绵型道路关键几何设计参数优化及雨天行车安全研究[D]. 南京: 东南大学, 2019.
    [2] 曹雪娟. 雾环境下山区高速公路驾驶员动态视认特性研究[D]. 重庆: 重庆交通大学, 2015.
    [3] KONSTANTOPOULOS P, CHAPMAN P, CRUNDALL D. Driver’ s visual attention as a function of driving experience and visibility. Using a driving simulator to explore drivers’ eye movements in day, night and rain driving[J]. Accident Analysis and Prevention, 2010, 42(3): 827-834. doi: 10.1016/j.aap.2009.09.022
    [4] PENG Y H, ABDEL-ATY M, SHI Q, et al. Assessing the impact of reduced visibility on traffic crash risk using microscopic data and surrogate safety measures[J]. Transportation Research Part C: Emerging Technologies, 2017, 74: 295-305. doi: 10.1016/j.trc.2016.11.022
    [5] 刘春媛. 基于激光大气透射仪的能见度测量误差研究[D]. 天津: 中国民航大学, 2016.
    [6] 高国强. 雨雾天环境中对激光传输衰减的研究[D]. 西安: 西安科技大学, 2014.
    [7] YU B, SUN Y. Simulation of impact of water-film spray on visibility[J]. Journal of Transportation Engineering Part B: Pavements, 2018, 144(4): 04018054.1-04018054.7.
    [8] 张义. 低能见度下山区高速公路行车安全影响及保障技术研究[D]. 重庆: 重庆交通大学, 2017.
    [9] 戢晓峰,张琪,覃文文,等. 恶劣天气对高原山区高速公路交通流特征的影响分析[J]. 交通信息与安全,2020,38(4): 10-16.

    JI Xiaofeng, ZHANG Qi, QIN Wenwen, et al. An impact analysis of bad weather on traffic flow characteristics of plateau mountain expressway[J]. Journal of Transport Information and Safety, 2020, 38(4): 10-16.
    [10] 范新南,冶舒悦,史朋飞,等. 改进大气散射模型实现的图像去雾算法[J]. 计算机辅助设计与图形学学报,2019,31(7): 1148-1155.

    FAN Xinnan, YE Shuyue, SHI Pengfei, et al. An image dehazing algorithm based on improved atmospheric scattering model[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7): 1148-1155.
    [11] 冯文燕,张存保,曹雨,等. 雾天区域高速公路网交通运行状态建模与分析[J]. 武汉理工大学学报(交通科学与工程版),2021,45(1): 93-98.

    FENG Wenyan, ZHANG Cunbao, CAO Yu, et al. Modeling and analysis of traffic state of regional freeway network in fog region[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(1): 93-98.
    [12] HUANG Y, YAN X D, LI X M. Using a multi-user driving simulator system to explore the patterns of vehicle fleet rear-end collisions occurrence under different foggy conditions and speed limits[J]. Transportation Research Part F:Traffic Psychology and Behaviour, 2020, 74: 161-172. doi: 10.1016/j.trf.2020.08.025
    [13] 姚镇海,周建平,邱新法. 基于高速公路视频图像的能见度计算[J]. 南京信息工程大学学报(自然科学版),2019,11(1): 85-90.

    YAO Zhenhai, ZHOU Jianping, QIU Xinfa. Visibility calculation algorithm based on highway video image[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2019, 11(1): 85-90.
    [14] PALVANOV A, CHO Y. VisNet: deep convolutional neural networks for forecasting atmospheric visibility[J]. Sensors, 2019, 19(6): 1343-1376. doi: 10.3390/s19061343
    [15] 石玉立,王彬,卜帆. 基于图像特征的大气能见度估算方法[J]. 南京理工大学学报(自然科学版),2018,42(5): 552-559.

    SHI Yuli, WANG Bin, BU Fan. Atmospheric visibility measurement based on image feature[J]. Journal of Nanjing University of Science and Technology, 2018, 42(5): 552-559.
    [16] 余乐,吴国雄,何兆益. 山地城市全透水沥青路面结构力学响应分析[J]. 公路,2021,66(11): 1-7.

    YU Le, WU Guoxiong, HE Zhaoyi. Analysis of structural mechanical response of fully permeable asphalt pavement in mountain city[J]. Highway, 2021, 66(11): 1-7.
    [17] 季天剑. 降雨对轮胎与路面附着系数的影响[D]. 南京: 东南大学, 2004.
    [18] RUSSAM K, ROSS N F. The depth of rain water on road surfaces[R]. London: Road Research Laboratory, Ministry of Transport,1968.
    [19] GALLAWAY B M, ROSE J G. The effects of rainfall intensity, pavement cross slope, surface texture, and drainage length on pavement water depths[R]. Washington D. C.: Federal Highway Administration, 1972.
    [20] WAMBOLD J C, HENRY J J, HEGMON R R. Evaluation of pavement surface texture significance and measurement techniques[J]. Wear, 1983, 83(2): 351-368.
    [21] ANDERSON J A. Depth of rain water on road surface[J]. Highways and Transportation, 1995, 42(5): 45-49.
    [22] MANCOSU F, PARRY A, TORRE F L. Friction variation due to speed and water depth[C]//Fourth International Symposium on Pavement Surface Characteristics on Roads & Airfields. Nantes: PIARC,2000: 249-258 .
    [23] CHESTERTON J, NANCEKIVELL N, TUNNICLIFFE N. The use of the gallaway formula for aquaplaning evaluation in New Zealand[C]//Transit NZ and NZIHT 8th Annual Conference. Vermont South: ARRB Group Limited,2006: 1-22.
    [24] ANDERSON D A, HUEBNER R S, REED J R, et al. Improved surface drainage of pavements[R]. Washington D. C.: Transportation Research Board, 1998.
  • 加载中
图(4) / 表(9)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  87
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-21
  • 修回日期:  2022-04-27
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2022-05-23

目录

    /

    返回文章
    返回