Evaluation of Vehicle Road Impact Sound Quality Based on Time-Frequency Perception Weighting
-
摘要:
为表征与量化人对路面冲击声的主观感受,首先,对减速带工况冲击非平稳噪声信号进行声时感知时长定义,同时根据人耳听声可辨性将声时历程分为冲击段、峰值段及衰减段;进而,以小波变换提取冲击噪声中的主冲击与多重微冲击特征信息,组成冲击声品质评价的基础特征阵;然后,类比峰值因子法定义频域滤波因子,并基于序关系分析法确定时变感知加权系数,组建时频滤波网络对基础特征阵加权且建立冲击声品质时频感知评价指标;最后,基于实车过减速带冲击噪声测试数据计算声品质指标,并进行对比验证. 研究结果表明:所提时频感知加权评价指标与主观评价的相关系数在车速20 km/h时为0.927,在车速30 km/h时为0.922;在考虑路面冲击声声时历程全程评价时,经典的声品质评价指标(特征频带时变响度)与主观评价的相关系数在车速20 km/h时为0.933,在车速30 km/h时为0.649;所提时频感知加权评价方法对于车速为20 km/h与30 km/h的情况具有较好的适用性.
Abstract:In order to characterize and quantify a person’s subjective perception of road impact sound, firstly, the acoustic time perception duration of the impact non-stationary noise signal of the speed bump condition was defined, and the acoustic time history was divided into the impact section, the peak section and the attenuation section according to the discernibility of the human ear. The main impact and multiple micro-impact feature information of the impact noise were extracted by the wavelet transforms, and the feature information was used to form the basic feature matrix for impact sound quality evaluation. Then, the frequency domain filter factor was defined by referring to the crest factor method, and the time-varying perceptual weighting coefficient was determined based on the sequence relation analysis method, and the time-frequency filter network was established to weight the basic feature matrix and establish the impact sound quality evaluation index. Finally, based on the test data of the impact noise of the actual vehicle driving through the speed bump, the sound quality index was calculated, and comparative verification was carried out. The results show that the correlation coefficient between the proposed time-frequency perception weighted evaluation index and subjective evaluation is 0.927 at 20 km/h and 0.922 at 30 km/h. When considering the road impact acoustic time history evaluation, the correlation coefficient between the classic sound quality evaluation index(characteristic frequency band time-varying loudness) and subjective evaluation is 0.933 at 20 km/h and 0.649 at 30 km/h. The proposed time-frequency perception weighted evaluation method has good applicability for the conditions of 20 km/h and 30 km/h.
-
表 1 路面冲击声品质主观评价等级评分定义
Table 1. Definition of subjective evaluation grade of road impact sound quality
评价等级 没有不
舒适略微不
舒适不舒适 明显不
舒适极不舒适 评分 1~2 3~4 5 6~8 9~10 表 2 路面冲击声品质指标
Table 2. Road impact sound quality indicators
试验编号 车速/
(km·h−1)TV/ms TS/ms TM/ms TD/ms STF/ 主观评分 Test1 20 500 100 160 240 6.81 3.87 Test2 20 500 100 160 240 4.66 3.62 Test3 20 500 100 160 240 6.75 4.37 Test4 20 500 100 160 240 24.17 5.50 Test5 20 500 100 160 240 39.19 5.62 Test6 20 500 100 160 240 18.61 5.37 Test27 30 340 80 100 160 45.54 5.75 Test28 30 340 80 100 160 42.31 5.75 Test29 30 340 80 100 160 41.46 5.62 Test30 30 340 80 100 160 39.41 5.37 表 3 STF相关分析统计
Table 3. The correlation analysis statistics of STF
指标 编号 车速/(km·h−1) 相关系数 置信水平 STF 5 20 0.927 0.99 30 0.922 0.99 表 4 时变响度模型主要区别
Table 4. Main difference of the time-varying loudness model
类别 尺度/级数 传递特性 频域掩蔽 时域掩蔽 Zwicker 时变响度 Bark [0~24] 外耳与中耳综合考虑 图表法 单一时间常量 Moore 时变响度 ERB [1.8~38.9] 外耳与中耳独立考虑 机理数学模型 多时间常量 表 5 时变响度模型相关分析统计
Table 5. Correlation analysis statistics of time-varying loudness method
指标 编号 车速/(km·h−1) 相关系数 置信水平 NmaxZwicker 1 20 0.732 0.99 30 0.587 0.95 NZwicker 2 20 0.933 0.99 30 0.583 0.95 NmaxMoore 3 20 0.866 0.99 30 0.649 0.95 NMoore 4 20 0.926 0.99 30 0.168 -
[1] 徐中明,周小林,张芳,等. Moore响度在车内噪声分析中的应用[J]. 振动与冲击,2013,32(1): 169-173. doi: 10.3969/j.issn.1000-3835.2013.01.035XU Zhongming, ZHOU Xiaolin, ZHANG Fang, et al. Application of Moore loudness in a vehicle interior noise analysis[J]. Journal of Vibration and Shock, 2013, 32(1): 169-173. doi: 10.3969/j.issn.1000-3835.2013.01.035 [2] 韩雪,朴胜春,付金山. 舰船辐射噪声听觉节奏的时变响度特征提取[J]. 哈尔滨工程大学学报,2020,41(4): 487-492. doi: 10.11990/jheu.201904011HAN Xue, PIAO Shengchun, FU Jinshan. Time-varying loudness feature extraction of the audition rhythm of ship radiation noise[J]. Journal of Harbin Engineering University, 2020, 41(4): 487-492. doi: 10.11990/jheu.201904011 [3] The British Standards Institution. Acoustics-methods for calculating loudness part 1 Zwicker method: BS ISO 532-1[S]. [S.l.]: BSI Standards Limited, 2017. [4] 周明刚,董琦飞,刘阳,等. Zwicker时变响度的一种计算方法[J]. 中国机械工程,2014,25(22): 3073-3076. doi: 10.3969/j.issn.1004-132X.2014.22.017ZHOU Minggang, DONG Qifei, LIU Yang, et al. A calculation method of zwicker time-varying loudness[J]. China Mechanical Engineering, 2014, 25(22): 3073-3076. doi: 10.3969/j.issn.1004-132X.2014.22.017 [5] MOORE B C J, GLASBERG B R, VARATHANATHAN A, et al. A loudness model for time-varying sounds incorporating binaural inhibition[J]. Trends in Hearing, 2016, 20: 2331216516682698.1-2331216516682698.16. [6] MOORE B C J, JERVIS M, HARRIES L, et al. Testing and refining a loudness model for time-varying sounds incorporating binaural inhibition[J]. The Journal of the Acoustical Society of America, 2018, 143(3): 1504-1513. doi: 10.1121/1.5027246 [7] The British Standards Institution. Acoustics-methods for calculating loudness part 2 moore-glasberg method: BS ISO 532-2[S]. [S.l.]: BSI Standards Limited, 2017 [8] 张觉慧,张立军,于佳. 汽车时变噪声的响度计算模型适用性分析[J]. 同济大学学报(自然科学版),2010,38(9): 1345-1349. doi: 10.3969/j.issn.0253-374x.2010.09.017ZHANG Juehui, ZHANG Lijun, YU Jia. Applicability of different loudness models to time-varying sound of vehicle[J]. Journal of Tongji University (Natural Science), 2010, 38(9): 1345-1349. doi: 10.3969/j.issn.0253-374x.2010.09.017 [9] 刘红星,吴九汇,张俊,等. 基于时频域分形维数差的声品质评价新方法[J]. 噪声与振动控制,2018,38(增2): 526-531.LIU Hongxing, WU Jiuhui, ZHANG Jun, et al. A new sound quality evaluation approach based on time-frequency domain fractal dimension difference[J]. Noise and Vibration Control, 2018, 38(S2): 526-531. [10] KIM H W, LEE S K, NA E W. Sound quality evaluation of the impact noise induced by road courses having an impact bar and speed bumps in a passenger car[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2010, 224(6): 735-747. doi: 10.1243/09544070JAUTO1296 [11] 夏小均,徐中明,严涛,等. 基于小波熵的非稳态声品质评价参数研究[J]. 振动与冲击,2016,35(14): 83-89. doi: 10.13465/j.cnki.jvs.2016.14.013XIA Xiaojun, XU Zhongming, YAN Tao, et al. Sound metric of unsteady acoustic signal based on wavelet entropy[J]. Journal of Vibration and Shock, 2016, 35(14): 83-89. doi: 10.13465/j.cnki.jvs.2016.14.013 [12] LIANG L Y, CHEN S M, LI P R. The evaluation of vehicle interior impact noise inducing by speed bumps based on multi-features combination and support vector machine[J]. Applied Acoustics, 2020, 163: 107212.1-107212.21. [13] 黄海波,黄晓蓉,苏瑞强,等. 基于EEMD与GA-小波神经网络的传动系声品质预测[J]. 振动与冲击,2017,36(9): 130-137. doi: 10.13465/j.cnki.jvs.2017.09.020HUANG Haibo, HUANG Xiaorong, SU Ruiqiang, et al. Sound metric prediction of a power train system based on EEMD and GA-wavelet neural network[J]. Journal of Vibration and Shock, 2017, 36(9): 130-137. doi: 10.13465/j.cnki.jvs.2017.09.020 [14] 边姜,段向雷,李贝. 基于Hilbert变换的车辆过坎振动衰减评价方法[J]. 汽车工程学报,2019,9(5): 327-331.BIAN Jiang, DUAN Xianglei, LI Bei. Evaluation of vehicle vibration attenuation when passing over speed bumps based on Hilbert transform[J]. Chinese Journal of Automotive Engineering, 2019, 9(5): 327-331. [15] 蒋淑霞,罗意平. 基于小波阈值去噪与二次经验模态分解的发动机点火波形分析方法[J]. 汽车工程,2015,37(4): 380-386. doi: 10.3969/j.issn.1000-680X.2015.04.002JIANG Shuxia, LUO Yiping. An analysis method for engine ignition waveform based on wavelet threshold denoising and secondary empirical mode decomposition[J]. Automotive Engineering, 2015, 37(4): 380-386. doi: 10.3969/j.issn.1000-680X.2015.04.002 [16] 张迅,赵宇,阮灵辉,等. 基于小波变换分析箱梁振动噪声的时频特性[J]. 西南交通大学学报,2020,55(1): 109-117. doi: 10.3969/j.issn.0258-2724.20170768ZHANG Xun, ZHAO Yu, RUAN Linghui, et al. Time-frequency characteristics of box-girder vibration and noise based on wavelet transform[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 109-117. doi: 10.3969/j.issn.0258-2724.20170768 [17] 康诺华. 实用非参数统计[M]. 3版. 北京: 人民邮电出版社, 2006: 381-382. 期刊类型引用(13)
1. 赵朝彬,郭亮亮. 基于多准则决策方法的水库移民安置点适宜性评价. 水资源开发与管理. 2025(04): 74-78 . 百度学术
2. 马清水,赵相铮,宋振骐,杨玉虎. 回采巷道稳定性风险评判模型设计与系统应用. 煤矿安全. 2024(10): 129-138 . 百度学术
3. 周阳阳,徐尚昭,陈斌,王晨光,张青峰,李文,周宏. 自然保护区立标点设计与选址研究——以北江鱼类保护区为例. 测绘地理信息. 2023(06): 127-132 . 百度学术
4. 于波,陈威昊. 基于GIS模型的区域地理信息实时测绘系统设计. 城市勘测. 2022(02): 71-75 . 百度学术
5. 陈刚,李冰,魏弋然,陈德高. 基于三维地理信息的配电网线路布局规划方法. 微型电脑应用. 2022(04): 178-182 . 百度学术
6. 孙德鹏 ,蒋举超 ,侯万万 . 三维GIS与AHP在森林无线传感器网络节点选址中的应用. 计算机应用与软件. 2022(04): 160-163+248 . 百度学术
7. 黄冬梅,王桂芳,胡安铎,孙锦中,许明珊. GIS在电网规划中的应用研究综述. 物联网技术. 2021(03): 70-73 . 百度学术
8. 王峰,刘波峰,柴淑颖,王丹璐. 基于MCD-AHP的预装式变电站城市化属性指标评价. 西南交通大学学报. 2021(05): 1020-1028 . 本站查看
9. 孟庆浩,刘莉. 基于GIS的快递自提点选址的优化研究:以株洲市天元区为例. 湖南城市学院学报(自然科学版). 2020(01): 26-32 . 百度学术
10. 邱钰峻,李远富,柯斌,但鹏飞. 基于修正G1和Vague集的川藏铁路重大桥梁桥位评价研究. 铁道标准设计. 2020(04): 67-72 . 百度学术
11. 肖志鹏,刘破浪,刘晔,胡芳文,彭怀贞,张子妍,高萍. 基于GIS和模糊层次分析法的观景点分布区评筛——以株洲九郎山山地公园为例. 林业资源管理. 2020(01): 158-165 . 百度学术
12. 仇光伟,胡以怀,郭晓亮. SMSC型轮机模拟器实操训练的自动评分方法及实现. 上海海事大学学报. 2020(02): 96-103 . 百度学术
13. 吴晶,李国庆,宋媛,王梦瑶. 环渤海陆地地区风能资源评估. 能源与环境. 2020(05): 14-16+30 . 百度学术
其他类型引用(10)
-