• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

深隧系统多工况入流冲击滞留气团分析

汪怡然 俞晓东 刘甲春 张健 徐辉

汪怡然, 俞晓东, 刘甲春, 张健, 徐辉. 深隧系统多工况入流冲击滞留气团分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20211053
引用本文: 汪怡然, 俞晓东, 刘甲春, 张健, 徐辉. 深隧系统多工况入流冲击滞留气团分析[J]. 西南交通大学学报. doi: 10.3969/j.issn.0258-2724.20211053
WANG Yiran, YU Xiaodong, LIU Jiachun, ZHANG Jian, XU Hui. Multiple-Mode Transient Inflow Impact with Entrapped Air Pocket in Deep Storage Tunnel Systems[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20211053
Citation: WANG Yiran, YU Xiaodong, LIU Jiachun, ZHANG Jian, XU Hui. Multiple-Mode Transient Inflow Impact with Entrapped Air Pocket in Deep Storage Tunnel Systems[J]. Journal of Southwest Jiaotong University. doi: 10.3969/j.issn.0258-2724.20211053

深隧系统多工况入流冲击滞留气团分析

doi: 10.3969/j.issn.0258-2724.20211053
基金项目: 国家自然科学基金(52179062,51879087)
详细信息
    作者简介:

    汪怡然(1994—),男,博士研究生,研究方向为流体机械及水利水电工程,E-mail:wangyr1210@126.com

    通讯作者:

    俞晓东(1985—),男,副教授,研究方向为水电站及泵站水力学,E-mail:yuxiaodong_851@hhu.edu.cn

  • 中图分类号: TU992.1

Multiple-Mode Transient Inflow Impact with Entrapped Air Pocket in Deep Storage Tunnel Systems

  • 摘要:

    深隧系统作为一种有效的城市内涝防治措施,在多竖井入流时存在气团滞留,可能引发压力振荡等问题,从而威胁系统的运行安全. 依托苏州河段深隧工程,建立双竖井单隧洞深隧系统模型,采用计算流体力学方法进行数值计算,并通过模型充水试验进行验证,分析多工况入流冲击所导致的气团滞留对压力波动的影响,并总结其规律. 结果表明:在设计入流工况下,3.5%的气团滞留可导致最大压力达到35.36 m,相当于控制水位竖井静压的1.77倍;当竖井总入流量恒定时,流量分配对压力的影响较小,而对称入流时极值压力最大,比单侧入流分别偏高3%和6%;在对称入流情况下,随着总入流量的增加,气团的最大压力会先增加后趋于稳定,在总入流量为116 m3/s时,相较于29 m3/s时增大约30%.

     

  • 图 1  双竖井单隧洞几何模型

    Figure 1.  Geometric model of dual shaft and single tunnel

    图 2  网格划分与无关性验证

    Figure 2.  Grid division and independence verification

    图 3  极值入流条件不同气团体积分数瞬态压力对比

    Figure 3.  Comparison of transient pressures with different air-pocket volume fractions under extreme inflow conditions

    图 4  极值入流冲击1.5%气团瞬态水气交界面对比

    Figure 4.  Fig. 4 Comparison of transient water-air interface of 1.5% air pocket under extreme inflow impact

    图 5  不对称入流瞬态压力与最大压力对比

    Figure 5.  Comparison between transient pressure and maximum pressure of asymmetric inflow

    图 6  对称入流瞬态压力与最大压力对比

    Figure 6.  Comparison between transient pressure and maximum pressure of symmetric inflow

  • [1] 张建云,王银堂,胡庆芳,等. 海绵城市建设有关问题讨论[J]. 水科学进展,2016,27(6):793-799.

    ZHANG Jianyun, WANG Yintang, HU Qingfang, et al. Discussion and views on some issues of the sponage city construction in China[J]. Advances in Water Science, 2016, 27(6): 793-799.
    [2] 杨乾,杨庆华,陈峰,等. 气爆过程中折板型竖井水力特性试验研究[J]. 西南交通大学学报,2023,58(5):1026-1036.

    YANG Qian, YANG Qinghua, CHEN Feng, et al. Experimental study on hydraulic characteristics in baffle-drop shaft during gas explosion[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1026-1036.
    [3] VASCONCELOS J G, WRIGHT S J. Experimental investigation of surges in a stormwater storage tunnel[J]. Journal of Hydraulic Engineering, 2005, 131(10): 853-861. doi: 10.1061/(ASCE)0733-9429(2005)131:10(853)
    [4] WRIGHT S J, VASCONCELOS J G, CREECH C T, et al. Flow regime transition mechanisms in rapidly filling stormwater storage tunnels[J]. Environmental Fluid Mechanics, 2008, 8(5): 605-616.
    [5] 张健,郑源,刘德有,等. 参数对输水管道水流冲击气团压力的影响[J]. 河海大学学报(自然科学版),2004,32(6):655-660. doi: 10.3321/j.issn:1000-1980.2004.06.014

    ZHANG Jian, ZHENG Yuan, LIU Deyou, et al. Influences of relevant parameters on pressure of current rush to air mass in pipeline system[J]. Journal of Hohai University (Natural Sciences), 2004, 32(6): 655-660. doi: 10.3321/j.issn:1000-1980.2004.06.014
    [6] 郑源,张健,索丽生,等. 输水管道水流对截留气团的冲击[J]. 水利学报,2005,36(11):1365-1370.

    ZHENG Yuan, ZHANG Jian, SUO Lisheng, et al. Impact pressure of pipeline water flow on detained air mass[J]. Journal of Hydraulic Engineering, 2005, 36(11): 1365-1370.
    [7] 郑源,索丽生,张健,等. 输水管道系统气体特性与水流冲击截留气团研究[J]. 水科学进展,2005,16(6):858-863.

    ZHENG Yuan, SUO Lisheng, ZHANG Jian, et al. Research on gas properties and current rush to interception air-mass in delivery pipeline system[J]. Advances in Water Science, 2005, 16(6): 858-863.
    [8] 刘德有,索丽生. 变特性长管道内水流冲击气团的刚性数学模型[J]. 水动力学研究与进展(A辑),2005,20(1):44-49.

    LIU Deyou, SUO Lisheng. Rigid model of transient analysis for multiple-characteristic long pipelines with trapped air mass[J]. Chinese Journal of Hydrodynamics, 2005, 20(1): 44-49.
    [9] 王福军,王玲. 大型管道输水系统充水过程瞬变流研究进展[J]. 水力发电学报,2017,36(11):1-12.

    WANG Fujun, WANG Ling. Advances in water filling transients in large pipeline transfer systems[J]. Journal of Hydroelectric Engineering, 2017, 36(11): 1-12.
    [10] 刘德有,周领,索丽生,等. 水流冲击管道内滞留气团现象的VOF模型仿真分析[J]. 计算力学学报,2009,26(3):390-394.

    LIU Deyou, ZHOU Ling, SUO Lisheng, et al. Simulation and analysis of the rapid filling in pipeline containing trapped air mass with VOF models[J]. Chinese Journal of Computational Mechanics, 2009, 26(3): 390-394.
    [11] ZHOU L, LIU D Y, OU C Q. Simulation of flow transients in a water filling pipe containing entrapped air pocket with VOF model[J]. Engineering Applications of Computational Fluid Mechanics, 2011, 5(1): 127-140. doi: 10.1080/19942060.2011.11015357
    [12] ZHOU L, WANG H, KARNEY B, et al. Dynamic behavior of entrapped air pocket in a water filling pipeline[J]. Journal of Hydraulic Engineering, 2018, 144(8): 04018045.1-04018045.14.
    [13] 卢坤铭,周领,刘静. 水流冲击多段滞留气团的三维数值模拟[J]. 排灌机械工程学报,2021,39(3):264-269.

    LU Kunming, ZHOU Ling, LIU Jing. Three-dimensional numerical simulation of transient pipe flow with multiple entrapped air pockets[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(3): 264-269.
    [14] 王福军. 流体机械旋转湍流计算模型研究进展[J]. 农业机械学报,2016,47(2):1-14.

    WANG Fujun. Research progress of computational model for rotating turbulent flow in fluid machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(2): 1-14.
    [15] WANG Y R, YU X D, HAN X X, et al. Influences of eccentricity ratio on the internal flow and cavitation characteristics of progressing cavity pump[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(22): 6111-6121.
    [16] HOU Q Z, TIJSSELING A S, LAANEARU J, et al. Experimental investigation on rapid filling of a large-scale pipeline[J]. Journal of Hydraulic Engineering, 2014, 140(11): 04014053.1-04014053.14.
  • 加载中
图(6)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  22
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-05-11
  • 网络出版日期:  2024-03-13

目录

    /

    返回文章
    返回