Hybrid Characteristics of Heterogeneous Traffic Flow Under Different Aggregating Lane-Change Strategies in Intelligent Network
-
摘要:
为研究车联网环境下异质交通流的演变规律,首先,引入相对熵定量描述异质流的有序性,并分析有序性与智能网联车(connected and autonomous vehicle,CAV)市场渗透率、协同自适应巡航控制(cooperative adaptive cruise control,CACC)队列数之间的内在联系,推导得出智能网联车渗透率的增加及队列数的减少可以提升异质流的有序性;其次,提出了保守型集聚(conservative aggregation,CSA)、激进型集聚(radical aggregation,RDA)两种改进的智能网联车集聚换道策略,并通过元胞自动机仿真实验,从通行能力、相对熵和平均队列长度等方面比较了无集聚(no aggregation,NOA)、常规集聚(conventional aggregation,CVA)、CSA、RDA 4种换道策略的优劣;最后,在CSA换道策略中分析了不同最小队列规模限制对于通行能力的影响. 研究结果表明:在双车道环境下,采取集聚换道策略能使智能网联车形成CACC队列,使异质流趋于“有序”,在20~95辆/km密度范围内提升通行能力;相比NOA换道策略,CSA、RDA换道策略分别最大提升道路通行能力12.6%、14.0%,但当智能网联车市场渗透率为0.8时,RDA换道策略导致最大通行能力反而降低25.8%;根据相对熵对异质流中智能网联车辆集聚程度的定量描述,NOA、CVA、CSA、RDA 4种换道策略对智能网联的集聚能力依次递增;在CSA换道策略中,CACC最小队列规模取4辆时道路通行效率达到最佳.
Abstract:In order to study the evolution rule of heterogeneous traffic flow under the background of IOV (internet of vehicles), the concept of relative entropy in introduced to quantitatively describe the orderliness of heterogeneous flow, and analyze the inner link among orderliness, market penetration rate of CAV (connected and autonomous vehicle)and the number of queues for CACC (cooperative adaptive cruise control). Then, it is deduced that the increase on the market penetration rate of CAV and decrease on the number of queues can improve the orderliness of heterogeneous flow. Second, two improved lane change strategies for CAVs are proposed, namely, conservative aggregation (CSA) and radical aggregation (RDA). Through the simulation test of cellular automata, the advantages and disadvantages of no aggregation (NOA), conventional aggregation (CVA), CSA, and RDA are compared in terms of traffic capacity, relative entropy and average queue length. Finally, the effect of different limits of minimum queue size on traffic capacity is analyzed with the lane change strategy of CSA. The results show that the use of lane change strategy can prompt the CACC collaborative queue in CAV and orderly heterogeneous flow. It improves traffic capacity in the density range from 20 to 95 veh/km. Compared with the NOA strategy, the CSA strategy increases the traffic capacity by 12.6%, and the RDA strategy by 14.0%. However, when the market penetration rate of CAV is 0.8, the maximum traffic capacity of the RDA strategy is reduced by 25.8%. According to the quantitative description of relative entropy for the aggregation degree of CAV in heterogeneous flow, four lane change strategies (NOA, CVA, CSA and RDA) increases the aggregation degree of CAV in turn. In the CSA strategy, when the minimum queue size of CACC takes 4 vehicles, the efficiency of traffic capacity is the optimal.
-
表 1 仿真参数值
Table 1. Simulation parameter value
参数 取值 ${a / \rm{ {(m {\text{•} } {s^{ - 2} } })} }$ 1 $ {{{v_{\rm{f}}}}/ {({\rm{m}}}} {\text{•}} {{\rm{s}}^{ - {\text{1}}}}) $ 33.3 $ {{{v_{{\rm{max}}}}} / {({\rm{m}}}} {\text{•}} {{\rm{s}}^{ - {\text{1}}}}) $ 33.3 $ {{{d_0}} / {\rm{m}}} $ 2 $ {{{t_0}} /{\rm{ s}}} $ 1.6 (CAV), 1.1 (HV) $ {b / {({\rm{m}}}} {\text{•}}{{\rm{s}}^{ - 2}}) $ 2 $ {{{b_{{\rm{max}}}}}/ {({\rm{m}}}} {\text{•}} {{\rm{s}}^{ - 2}}) $ 6 $ {l / {\rm{m}}} $ 6 $ {{{D_{\rm{R}}}} / {\rm{m}}} $ 300 $ {k_{\rm{p}}} $ 0.45 $ {k_{\rm{d}}} $ 0.25 $ {t_{\rm{c}}} $ 0.6 $ \lambda $ 0.5 Smin/辆 3.0 表 2 最大通行能力提升程度
Table 2. Maximum capacity improvement
% 集聚策略 p = 0.2 p = 0.4 p = 0.6 p = 0.8 CVA 2.1 6.7 1.2 0.4 CSA 10.4 12.6 5.1 3.3 RDA 12.3 14.0 9.7 −25.8 -
[1] GHIASI A, HUSSAIN O, QIAN Z, et al. A mixed traffic capacity analysis and lane management model for connected automated vehicles: a Markov chain method[J]. Transportation Research Part B: Methodological, 2017, 106: 266-292. doi: 10.1016/j.trb.2017.09.022 [2] MILANÉS V, SHLADOVER S E. Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300. doi: 10.1016/j.trc.2014.09.001 [3] CHEN D J, AHN S, CHITTURI M, et al. Towards vehicle automation: roadway capacity formulation for traffic mixed with regular and automated vehicles[J]. Transportation Research Part B: Methodological, 2017, 100: 196-221. doi: 10.1016/j.trb.2017.01.017 [4] VRANKEN T, SLIWA B, WIETFELD C, et al. Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles[J]. Physica A: Statistical Mechanics and Its Applications, 2021, 570: 125792.1-125792.17. [5] LAI J T, HU J, CUI L, et al. A generic simulation platform for cooperative adaptive cruise control under partially connected and automated environment[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102874.1-102874.24. [6] YE L H, YAMAMOTO T. Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 512: 588-597. doi: 10.1016/j.physa.2018.08.083 [7] PAPADOULIS A, QUDDUS M, IMPRIALOU M. Evaluating the safety impact of connected and autonomous vehicles on motorways[J]. Accident Analysis & Prevention, 2019, 124: 12-22. [8] ZHONG Z J, LEE J. The effectiveness of managed lane strategies for the near-term deployment of cooperative adaptive cruise control[J]. Transportation Research Part A: Policy and Practice, 2019, 129: 257-270. doi: 10.1016/j.tra.2019.08.015 [9] 梁军,杨程灿,王文飒,等. 自动驾驶车辆混行集聚MAS控制模型[J]. 中国公路学报,2021,34(6): 172-183.LIANG Jun, YANG Chengcan, WANG Wensa, et al. Agglomeration control model based on multi-agents for autonomous vehicles in mixed traffic environment[J]. China Journal of Highway and Transport, 2021, 34(6): 172-183. [10] 吴德华,彭锐,林熙玲. 智能网联异质交通流混合特性[J]. 西南交通大学学报,2022,57(4): 761-768.WU Dehua, PENG Rui, LIN Xilin. Hybrid characteristics of heterogeneous traffic flow in intelligent network[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 761-768. [11] 秦严严,王昊,王炜,等. 混有CACC车辆和ACC车辆的异质交通流基本图模型[J]. 中国公路学报,2017,30(10): 127-136. doi: 10.3969/j.issn.1001-7372.2017.10.016QIN Yanyan, WANG Hao, WANG Wei, et al. Fundamental diagram model of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles and adaptive cruise control vehicles[J]. China Journal of Highway and Transport, 2017, 30(10): 127-136. doi: 10.3969/j.issn.1001-7372.2017.10.016 [12] 周思,柳祖鹏,陈玲娟,等. 路段上集群智能网联汽车的车队形成机制[J]. 公路,2021,66(2): 210-215.ZHOU Si, LIU Zupeng, CHEN Lingjuan, et al. Platoon formation mechanism of collective connected autonomous vehicles on road[J]. Highway, 2021, 66(2): 210-215. [13] 李松,贺国光,张晓利. 一种基于交通熵的交通流无序度量方法[J]. 公路交通科技,2007,24(11): 92-95. doi: 10.3969/j.issn.1002-0268.2007.11.021LI Song, HE Guoguang, ZHANG Xiaoli. A measuring method for disorder motion in traffic flow based on traffic entropy[J]. Journal of Highway and Transportation Research and Development, 2007, 24(11): 92-95. doi: 10.3969/j.issn.1002-0268.2007.11.021 [14] LIU Z P, XU C X, CHEN L J, et al. Dynamic traffic flow entropy calculation based on vehicle spacing[J]. IOP Conference Series: Earth and Environmental Science, 2019, 252: 052073.1-052073.6. [15] ZHOU Y J, ZHU H B, GUO M M, et al. Impact of CACC vehicles’ cooperative driving strategy on mixed four-lane highway traffic flow[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 540: 122721.1-122721.13. [16] 董长印,王昊,王炜,等. 混入智能车的下匝道瓶颈路段交通流建模与仿真分析[J]. 物理学报,2018,67(14): 179-193. doi: 10.7498/aps.67.20172752DONG Changyin, WANG Hao, WANG Wei, et al. Hybrid traffic flow model for intelligent vehicles exiting to off-ramp[J]. Acta Physica Sinica, 2018, 67(14): 179-193. doi: 10.7498/aps.67.20172752 [17] TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Effect of information availability on stability of traffic flow: percolation theory approach[J]. Transportation Research Part B: Methodological, 2018, 117: 624-638. doi: 10.1016/j.trb.2017.09.005 [18] 秦严严,王昊,王炜,等. 混有协同自适应巡航控制车辆的异质交通流稳定性解析与基本图模型[J]. 物理学报,2017,66(9): 257-265. doi: 10.7498/aps.66.094502QIN Yanyan, WANG Hao, WANG Wei, et al. Stability analysis and fundamental diagram of heterogeneous traffic flow mixed with cooperative adaptive cruise control vehicles[J]. Acta Physica Sinica, 2017, 66(9): 257-265. doi: 10.7498/aps.66.094502