Track Condition Evaluation for Multi-vehicle Performance Prediction Model Based on Convolutional Neural Network and Gated Recurrent Unit
-
摘要:
不同车型高速综合检测列车的动力学传递特性不同,使得其对同一线路的车体加速度评价结果存在一定差异. 为解决上述问题,本文基于多列动检车的检测数据,将卷积神经网络(convolutional neural network,CNN)与门控循环单元(gated recurrent unit,GRU)相结合,建立了多车型车辆动力学响应预测模型,通过输入多项实测轨道不平顺和车速预测各车型的车体垂向和横向加速度,并将多车型车体加速度预测值的最大包络作为轨道状态评价依据. 结果表明:将高低、轨向不平顺等8项轨道不平顺和车速共同作为输入参数的模型预测性能最优,车体垂向和横向加速度预测的评估指标分别提升了5%~13%和25%~36%;CNN-GRU模型所预测的车体加速度在时域和频域均与实测结果吻合较好,相关系数最大达到0.902;且相比于BP (back propagation)神经网络,各项车体垂向和横向加速度预测的评估指标分别提升了36%~109%和11%~167%;针对某轨道几何状态不良区段应用效果,预测6种车型中有4种车型达到车体垂向加速度Ⅰ级或Ⅱ级超限,有1种车型达到车体横向加速度Ⅰ级超限,提高了轨道状态评价的准确性和一致性.
-
关键词:
- 轨道不平顺 /
- 车体加速度 /
- 轨道状态评价 /
- 门控循环单元(GRU) /
- 卷积神经网络(CNN)
Abstract:The dynamic transmission characteristics of different types of high-speed track inspection vehicles are different, which makes the evaluation results of vehicle body acceleration on the same railway line different. To solve the above problem, the convolutional neural network (CNN) is combined with the gated recurrent unit (GRU) to establish a dynamic response prediction model for multi-vehicle dynamic response, which predicts the vertical and lateral acceleration of each vehicle by inputting a number of measured track irregularities and vehicle speeds, and uses the maximum envelope of the predicted values of multi-vehicle acceleration as the basis for track state evaluation. The results show that the model with eight track irregularities and vehicle speed, such as longitudinal irregularity, horizontal irregularity, as input parameters has the best prediction performance, and the evaluation indices of vertical and lateral vehicle acceleration prediction are increased by 5%–13% and 25%–36%, respectively. The vehicle acceleration predicted by the CNN-GRU model is in good agreement with the measured results in both time domain and frequency domains, with the maximum correlation coefficient of 0.902. Compared with back propagation (BP) neural network, CNN-GRU improves the evaluation indices of vertical and lateral vehicle acceleration prediction by 36%–109% and 11%–167%, respectively. The application result in a section with poor track geometry state shows that four out of the six vehicle types reach the level Ⅰ or Ⅱ overrun of the vehicle vertical acceleration, and one vehicle type reaches the level Ⅰ overrun of the vehicle lateral acceleration, which improves the accuracy and consistency of the track state evaluation.
-
表 1 轨道不平顺输入组合的CNN-GRU评价指标
Table 1. CNN-GRU evaluation index of track irregularity input combination
组号 输入 加速度 EMAE/
(m·s−2)ERMSE/
(m·s−2)UTIC ρ ① 车速 + 长波高低 + 长波轨向 垂向 0.078 0.098 0.291 0.839 横向 0.053 0.067 0.404 0.701 ② ① + 高低 + 轨向 垂向 0.074 0.093 0.274 0.858 横向 0.049 0.062 0.389 0.737 ③ ② + 水平 垂向 0.069 0.087 0.259 0.875 横向 0.040 0.051 0.294 0.855 ④ ③ + 三角坑 垂向 0.070 0.088 0.257 0.875 横向 0.041 0.053 0.312 0.831 ⑤ ④ + 超高 垂向 0.070 0.088 0.262 0.872 横向 0.038 0.049 0.279 0.847 ⑥ ⑤ + 轨距 垂向 0.068 0.086 0.253 0.880 横向 0.034 0.044 0.256 0.879 ⑦ ⑥ (去除车速) 垂向 0.071 0.089 0.264 0.869 横向 0.038 0.049 0.289 0.848 表 2 不同车型的训练集和测试集里程
Table 2. Kilometrages of training set and test set for various track inspection vehicles
km 序号 车型 训练集总里程 测试集总里程 1 CRH2A-2010 400 (上行) 200 (上行) 2 CRH2C-2150 840 (上行) 200 (下行) 3 CRH380BJ-A-0504 400 (上行) 210 (上行) 4 CRH5J-0501 400 (下行) 100 (下行) 5 CRH380AJ-0201 940 (上行) 200 (上行) 6 CRH380BJ-0301 200 (下行) 100 (上行) 表 3 小波分解层及波长范围
Table 3. Wavelet decomposition layer and wavelength range
小波层 D1 D2 D3 D4 D5 D6 D7 D8 A8 波长范围/m (0.5, 1.0] (1.0, 2.0] (2.0, 4.0] (4.0, 8.0] (8.0, 16.0] (16.0, 32.0] (32.0, 64.0] (64.0, 128.0] >128.0 表 4 多车型的不同模型评估指标对比
Table 4. Comparison of the evaluation index of different models for multi-vehicle
模型 车型 加速度 EMAE/
(m·s−2)ERMSE/
(m·s−2)UTIC ρ BP CRH2A-2010 垂向 0.113 0.152 0.692 0.214 横向 0.059 0.078 0.698 0.233 CRH2C-2150 垂向 0.118 0.151 0.716 0.343 横向 0.054 0.071 0.693 0.345 CRH380BJ-A-0504 垂向 0.064 0.081 0.618 0.468 横向 0.060 0.064 0.752 0.161 CRH5J-0501 垂向 0.051 0.066 0.633 0.440 横向 0.055 0.071 0.855 0.223 CRH380AJ-0201 垂向 0.116 0.148 0.739 0.434 横向 0.045 0.059 0.893 0.139 CRH380BJ-0301 垂向 0.070 0.091 0.682 0.339 横向 0.060 0.081 0.780 0.104 GRU CRH2A-2010 垂向 0.065 0.086 0.317 0.820 横向 0.041 0.056 0.396 0.711 CRH2C-2150 垂向 0.083 0.106 0.366 0.753 横向 0.045 0.061 0.485 0.600 CRH380BJ-A-0504 垂向 0.055 0.070 0.413 0.670 横向 0.037 0.048 0.346 0.782 CRH5J-0501 垂向 0.041 0.052 0.413 0.701 横向 0.054 0.071 0.620 0.333 CRH380AJ-0201 垂向 0.069 0.088 0.296 0.841 横向 0.043 0.056 0.611 0.383 CRH380BJ-0301 垂向 0.056 0.074 0.420 0.667 横向 0.053 0.071 0.543 0.491 CNN-GRU CRH2A-2010 垂向 0.050 0.065 0.227 0.902 横向 0.044 0.059 0.426 0.671 CRH2C-2150 垂向 0.079 0.100 0.337 0.789 横向 0.046 0.061 0.443 0.621 CRH380BJ-A-0504 垂向 0.054 0.068 0.408 0.691 横向 0.037 0.048 0.350 0.784 CRH5J-0501 垂向 0.041 0.052 0.391 0.714 横向 0.060 0.078 0.631 0.243 CRH380AJ-0201 垂向 0.058 0.074 0.245 0.888 横向 0.041 0.053 0.547 0.479 CRH380BJ-0301 垂向 0.056 0.073 0.398 0.693 横向 0.062 0.080 0.545 0.416 表 5 各车型预测的加速度最大幅度值及偏差等级
Table 5. Maximum amplitude value and deviation level of the acceleration predicted by each track inspection vehicle
车型 垂向加速度/
(m·s−2)横向加速度/
(m·s−2)最大值 超限等级 最大值 超限等级 CRH2A-2150 1.12 Ⅰ 0.57 未超限 CRH2C-2010 1.92 Ⅱ 0.53 未超限 CRH380BJ-A-0504 1.22 Ⅰ 0.30 未超限 CRH5J-0501 0.73 未超限 0.59 未超限 CRH380AJ-0201 1.58 Ⅱ 0.40 未超限 CRH380BJ-0301 0.98 未超限 0.84 Ⅰ -
[1] 刘金朝,刘秀波. 轨道质量状态评价方法[J]. 铁路技术创新,2012(1): 106-109. doi: 10.19550/j.issn.1672-061x.2012.01.030 [2] 关庆华,赵鑫,温泽峰,等. 基于Hertz接触理论的法向接触刚度计算方法[J]. 西南交通大学学报,2021,56(4): 883-890.GUAN Qinghua, ZHAO Xin, WEN Zefeng, et al. Calculation method of hertz normal contact stiffness[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 883-890. [3] LUBER B. Railway track quality assessment method based on vehicle system identification[J]. e & i Elektrotechnik und Informationstechnik, 2009, 126(5): 180-185. [4] LUBER B, HAIGERMOSER A, GRABNER G. Track geometry evaluation method based on vehicle response prediction[J]. Vehicle System Dynamics, 2010, 48(S1): 157-173. [5] FURUKAWA A, YOSHIMURA A. A method to predict track geometry-induced vertical vehicle motion[J]. Quarterly Report of RTRI, 2004, 45(3): 142-148. doi: 10.2219/rtriqr.45.142 [6] FURUKAWA A. A method to predict vertical vehicle motion caused by track irregularities[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(4): 431-443. doi: 10.1177/0954409716634394 [7] LI M X D, BERGGREN E G, BERG M, et al. Assessing track geometry quality based on wavelength spectra and track-vehicle dynamic interaction[J]. Vehicle System Dynamics, 2008, 46(S1): 261-276. [8] BERGGREN E G, LI M X D, SPÄNNAR J. A new approach to the analysis and presentation of vertical track geometry quality and rail roughness[J]. Wear, 2008, 265(9/10): 1488-1496. [9] LI M X D, BERGGREN E G, BERG M. Assessment of vertical track geometry quality based on simulations of dynamic track-vehicle interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(2): 131-139. doi: 10.1243/09544097JRRT220 [10] WANG J K, HE Y L, LU H Y, et al. Study on vibration acceleration prediction model of track inspection vehicle based on BP neural network[J]. IOP Conference Series: Materials Science and Engineering, 2018, 435: 012041.1-012041.8. [11] LI D, MEDDAH A, HASS K, et al. Relating track geometry to vehicle performance using neural network approach[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220(3): 273-281. doi: 10.1243/09544097JRRT39 [12] 徐磊,陈宪麦. 轨道不平顺作用下铁路列车车体振动状态的PCA-SVM预测分析[J]. 铁道学报,2014,36(7): 16-23. doi: 10.3969/j.issn.1001-8360.2014.07.003XU Lei, CHEN Xianmai. PCA-SVM forecast of car-body vibration states of railway locomotives and vehicles under the action of track irregularities[J]. Journal of the China Railway Society, 2014, 36(7): 16-23. doi: 10.3969/j.issn.1001-8360.2014.07.003 [13] 耿松,柴晓冬,郑树彬. 基于递阶神经网络的轨道车辆振动状态预测[J]. 城市轨道交通研究,2015,18(12): 94-98. doi: 10.16037/j.1007-869x.2015.12.021GENG Song, CHAI Xiaodong, ZHENG Shubin. Prediction of rail transit vehicle vibration state based on hierarchical neural network[J]. Urban Mass Transit, 2015, 18(12): 94-98. doi: 10.16037/j.1007-869x.2015.12.021 [14] 李立明,柴晓冬,郑树彬. 基于径向基函数神经网络的轨道交通车辆振动状态预测[J]. 城市轨道交通研究,2017,20(12): 18-21. doi: 10.16037/j.1007-869x.2017.12.005LI Liming, CHAI Xiaodong, ZHENG Shubin. Prediction of rail vehicle vibration state based on radial basis function nerve network[J]. Urban Mass Transit, 2017, 20(12): 18-21. doi: 10.16037/j.1007-869x.2017.12.005 [15] 刘秀波, 马帅, 高利民, 等. 基于轨道几何和LSTM的车辆响应预测模型[C]//第十三届全国振动理论及应用学术会议. 西安: 中国振动工程学会, 2019: 15-21. [16] MA S, GAO L, LIU X B, et al. Deep learning for track quality evaluation of high-speed railway based on vehicle-body vibration prediction[J]. IEEE Access, 2019, 7: 185099-185107. doi: 10.1109/ACCESS.2019.2960537 [17] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791 [18] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735 [19] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics, 2014: 1724-1734 [20] CHUNG J, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2021-11-10]. https://arxiv.org/abs/1412.3555. [21] 康熊,刘秀波,李红艳,等. 高速铁路无砟轨道不平顺谱[J]. 中国科学(技术科学),2014,44(7): 687-696. doi: 10.1360/N092014-00088KANG Xiong, LIU Xiubo, LI Hongyan, et al. PSD of ballastless track irregularities of high-speed railway[J]. Scientia Sinica (Technologica), 2014, 44(7): 687-696. doi: 10.1360/N092014-00088