Summary of Research on Key Technologies and Energy Management of Electro-Hydraulic Hybrid Powertrain
-
摘要:
现有混合动力驱动技术以油电、油液混合动力为主,旨在提高传统燃油车辆的能量利用率、降低油耗和排放. 基于液压技术的大功率密度及能量再生优势,电液混合动力系统可在全速工况范围内实现能量高效利用,提高纯电驱系统的功率密度,有效改善电动车辆续驶里程及蓄电池循环使用寿命. 本文对电液混合动力系统构型、能量回收技术、能量释放模式及控制策略等相关研究成果的进展、现状及发展趋势进行综述,分析了利用电液混合动力构型与先进能量管理策略提升纯电动车辆动力性能与能量利用率的可行性技术方案与应用前景. 根据已有研究成果,装备电液混合动力系统后车辆最大可降低约40%的能量消耗,在能量高效利用方面具有显著优势. 对于电液混合动力系统而言,液压能再生、耦合与释放等与行驶场景及电机工况点密切相关,研究重点应解决动力耦合、再生制动与能量管理等关键技术,从而提升动力系统的综合性能特别是功率密度与节能特性.
Abstract:The existing hybrid drive technology is mainly based on the hybrid power of oil electricity or liquid, and it aims to improve the energy utilization rate of conventional fuel vehicles and reduce fuel consumption and emissions. Based on the high power density and energy regeneration advantages of hydraulic technology, the electro-hydraulic hybrid powertrain can achieve efficient energy utilization within the full-speed operating range, increase the power density of pure electric drive system, and effectively improve the driving range of electric vehicles and cycling life of batteries. This paper summarizes the progress, current situation, and development trend of research on electro-hydraulic hybrid powertrain configuration, energy recovery technology, energy release mode, and control strategy and analyzes the feasibility and application prospect of using electro-hydraulic hybrid configuration and advanced energy management strategy to improve the power performance and energy utilization rate of pure electric vehicles. According to the existing research results, the vehicle equipped with an electro-hydraulic hybrid powertrain can reduce energy consumption by about 40% at most, which has significant advantages in efficient energy utilization. For an electro-hydraulic hybrid powertrain, hydraulic energy regeneration, coupling, and release are closely related to driving scenarios and motor operating conditions. The research should focus on solving key technologies such as power coupling, regenerative braking, and energy management, so as to improve the overall performance of the powertrain, especially the power density and energy-saving characteristics.
-
青藏铁路的开通对促进青藏高原的交通与经济建设发挥了重要作用. 为进一步提高其运输能力和效益,青藏铁路格拉段电气化工程提上日程. 青藏铁路格拉段穿越青藏高原多年冻土地段546.43 km,地质条件复杂,路基的冻胀融沉病害严重[1-2]. 由于接触网支柱桩基础承担的上部荷载较小且桩长较短,在长期冻融循环约束冻胀作用下易产生冻拔失稳或破坏[3]. 如何保证接触网支柱桩基础的冻拔稳定性是青藏铁路格拉段电气化改造工程中的关键问题[4-5].
目前,在冻土地基中桩基冻拔方面,国内外学者已通过现场试验、模型试验与数值模拟的方法取得了一定的研究成果:Lu等[6]通过引入关于层状饱和土的状态向量、静态波向量和反射-透射矩阵(RTM)的基本解,建立层状冻土与单桩相互作用的第二类Fredholm积分方程,并对其进行了数值求解;Zhou等[7]采用现场试验与数值模拟的方法研究了热管对青藏高原多年冻土区输电塔基热力学特性的影响;王腾飞等[8-10]研究了季节冻土区光伏支架螺旋桩基础在单向冻结条件下的冻拔响应及半螺旋桩的抗冻拔理论计算方法;为减小桩基冻拔量,锥形桩与扩底桩逐渐被应用于工程实践中,许健等[11-16]采用模型试验、理论分析及数值模拟的方法对冻土区锥形桩与扩底桩的抗冻拔性能及其影响因素进行深入研究,并对扩底桩的优化选型进行总结分析. 上述研究中,桩周土体都产生水平方向的对称冻胀. 然而,铁路接触网支柱桩基是设置于既有路基中的柱型构件,其稳定性受路基与边坡2个方向冷(热)量的共同影响,桩周土体产生水平方向的非对称冻胀. 关于多年冻土区既有路基活动层在二维冻融过程中桩基受力变形方面的研究成果较少.
鉴于此,本文通过大比例模型试验,对多年冻土区不同桩型的接触网支柱桩基在冻融作用下的相关热力学特性开展研究. 探讨在冻拔作用下等截面圆形桩、直锥柱形桩及曲锥柱形桩的抗冻拔效果,得到接触网支柱桩基础的地温、冻拔位移、切向冻胀力的分布规律,揭示接触网支柱桩基在冻融循环作用下的受力变形机理.
1. 试验设计
1.1 试验土样与试验装置
为更好地体现青藏铁路路基土体对接触网桩基础的影响,试验用土取自青藏铁路沱沱河车站,接触网下部基础钻孔施工试验的现场. 试验土体的最大干密度为1.92 g/cm3,其中,小于0.075 mm粒径的颗粒占5.6%,根据土工试验方法标准(GB/T 50123—2019)[17],该土样定义为含细粒土砂(SF). 试验所用低温环境箱的内尺寸为3.2 m (长) × 1.7 m (宽) × 1.9 m (高). 制作1.6 m (长) × 1.0 m (宽) × 1.0 m (高)的模型箱,置于低温环境箱,模型箱四周均覆盖保温隔热材料. 为模拟多年冻土,采用2个冷浴系统分别模拟控制环境温度与多年冻土层的温度.
1.2 模型桩与测试元件布设
为降低接触网支柱桩基的冻拔力,改变普通等截面圆形桩在活动层的桩基截面形状,本次试验中共设置3种截面形式的模型桩,分别为等截面圆形桩Z1、圆锥柱形桩Z2及曲锥柱形桩Z3. 根据模型试验相似原理,土质、含水量及环境温度与现场实际情况一致,现场接触网支柱桩基预设计桩长8 m,桩径0.55 m. 模型桩采用有机玻璃加工制作,桩身材料的密度、弹性模量与导热系数分别为1.18 g/cm3、2.56 GP和0.19 W/(m·℃). 结合现有的试验条件,将模型试验的几何相似比取为1∶10. 模型桩的具体尺寸及应变片布设见图1所示. 沿桩身同一深度处对称布设BE120-3AA-P300型号应变片,利用同一深度处相同的温度变化来消除温度对应变片的影响,其中一片沿桩身轴向贴在外表面(测量片),另一片沿桩身环向贴于相应的位置(温度补偿片). 在应变采集仪中采用半桥接线法.
试验采用PT100温度传感器测试土体温度,精度为 ± 0.1 ℃. 图2为模型桩及测试元件布设图,温度传感器共布设3个断面,从左到右依次为断面A、断面B与断面C,每个断面有2个测温孔,分别位于路基与边坡上. 环境箱内布设3个环境温度测点. 在桩顶布设2个位移传感器实时测试桩顶的竖向与水平位移,在Z1与Z2桩之间、Z2与Z3桩之间分别布设3个位移计,测试路基、路肩及边坡土体的位移. 根据文献[7]的研究成果,距桩3.4 倍桩径处土体的冻胀位移基本不受桩体影响,故本试验中模型桩之间的相互影响忽略不计.
2. 试验方法步骤
选取青藏高原沱沱河地区一年内正弦气温变化函数为
Ta(t)=−2.5+12.0sin(2πt/8640+π/2), (1) 式中:-2.5为年平均气温,12.0为气温振幅,t为时间,h.
模型试验共设计3个冻融循环,正式试验前通过多次预试验可得:若时间相似比取1∶10,即模型试验中3.6 d模拟现场的1年,土体的冻融深度达不到30 cm;当时间相似比取1∶6时,冻融深度约为30 cm. 因此,将模型试验的时间相似比取为1∶6,即模型试验中10.0 d模拟现场的1年. 模型试验中环境箱温度按式(2)控制.
T(t)=−2.5+12.0sin(2πt/240+π/2). (2) 试验步骤主要包含:
步骤1 准备试验. 按试验设计加工制作试验模型箱,模型箱四周均粘贴保温隔热材料,底部设计冷浴管路;按各模型桩的设计尺寸加工有机玻璃模型桩,桩周粘贴布设BE120-3AA-P300型号应变片;将现场取回的土样配备足量含水量为15%的试验用土,将其搅拌充分均匀后用塑料布包裹并静置72 h.
步骤2 土样分层填筑压实及测设元件布设. 在模型箱内壁涂抹凡士林,以此来消除模型箱边界对土体的约束作用. 试验填土初始含水量15%,分10层填筑,压实度按0.93控制,模型箱内壁粘贴软皮尺以控制土层的填筑厚度,桩身附近的土体采用橡皮锤击实. 填筑过程中,温度及位移传感器按图2进行布设.
步骤3 模型箱底板与顶板温度的控制. 将底板温度调为−2 ℃恒温控制,顶板调制为10 ℃, 静置30 d,形成初始温度场.
步骤4 开始试验. 按T(t) 调节环境温度实现土体的冻融变化.
步骤5 试验数据的自动采集. 自动实时采集冻融循环过程中应变、温度传感器与位移传感器的读数.
3. 试验结果分析
3.1 温度场分布
试验中断面A、B、C的温度场分布基本一致,以断面B桩Z2附近路基与边坡上2个测温孔的温度场进行分析. 图3为断面B路基与边坡测温孔不同深度土层温度随时间的变化曲线,其中第17天的数据缺失. 由图3可以看出:整个试验共进行30.0 d,为3个冻融循环,随着T(t)的变化,不同深度土层温度随时间也呈正弦状分布,能较好地模拟现场实际地温的变化情况;各土层温度的变化相对于环境温度出现滞后现象,且随深度的增加,滞后效应越明显;下冷板能较好地控制模型下部土层的地温,路基与边坡2个测温孔深90 cm处的平均地温约为−1.5 ℃ .
通过试验进程中所得的各测点温度,绘制冻融过程中断面B路基与边坡处的等温线分布,如图4所示. 由图可得:试验开始阶段,模型箱底部20 cm 厚的土层处于冻结状态,其他土层都为未冻土,随着环境温度的降低,基础与土体的热量向环境中扩散,冻结锋面下移,土层主要发生自上而下的冻结. 经过一个冻结期后,整个基础完全处于冻结状态. 随着环境温度的升高,模型上部土层融化,路基测温孔第2、3个周期的最大融化深度分别为31.5 cm和28.0 cm,边坡测温孔第2、3个周期的最大融化深度分别为17.0、14.0 cm.
图5为路基与边坡2个测温孔地温沿深度变化的对比曲线. 由图可以看出:冻土上限以上活动层地温正负温变化较剧烈,其中第11、12、19、20 天活动层地温为正值,呈融化状态,第16天活动层地表地温最低,达到 −8.1 ℃. 通过比较2个测温孔的地温数值,发现相同时间同一深度处2个测温孔的数据存在较大的差异,在暖季阶段,边坡测温孔的地温比相同条件下路基测温孔的地温较高;在寒季阶段,边坡测温孔的地温比相同条件下路基测温孔的地温较低,且在活动层内这种现象愈剧烈. 以上说明路基体的冻结(融化)受路基顶面与边坡的2个方向冷(热)量的共同影响,是一个二维冻结(融化)问题,接触网支柱基础路基与边坡两侧的温度场是非对称分布的.
第1个周期,由于土层的填筑与环境箱内初始温度等因素的影响,试验数据的变化规律相对杂乱,在下面的分析中以第10天为起点. 图6(a)为路基、路肩及边坡处土体表层的位移随时间的变化曲线. 由图可知:路基、路肩及边坡处位移变化趋势基本一致,都与环境温度的变化密切相关. 当环境温度为正温阶段,路基、路肩及边坡土体位移基本不变,环境温度降为负温时,土体的冻结速率较快,土层位移迅速发生冻胀,路基、路肩及边坡处土体最大冻胀量分别为2.2、4.3、3.1 mm,其中,路肩处的位移最大. 产生以上现象的原因是环境温度降低时,冷量从路基顶面与边坡2个方向进入路基体,路基土体在2个方向上产生二维冻结,导致路肩处的冻胀位移最大. 当环境温度为正温并升高时,路基、路肩及边坡处土体位移均产生融沉,基本回到冻胀起始前的位移.
图6(b)、(c)为桩顶竖向与水平位移随时间的变化曲线. 由图可知:桩顶位移的变化与土体位移的变化规律基本一致,亦与环境温度的变化密切相关;在第2个冻融周期内桩Z1、Z2、Z3的竖向冻拔量分别为0.26、0.12、0.15 mm,桩Z2、Z3的竖向冻拔量分别为桩Z1的46%、58%,说明直锥柱形桩与曲锥柱形桩在整个冻结过程中有较好的抗冻拔效果;路基土体冻结过程中桩Z1、Z2、Z3的桩顶都会产生较小的水平冻胀位移,分别为0.10、0.13、0.14 mm.
3.2 桩身应力
图7为第2个冻融周期内桩身轴力沿深度的分布曲线. 由图可以看出:活动层土体在冻结融化过程中,桩长范围内的轴力都为拉力,随桩长增加0~0.3 m范围内轴力先增大,随后轴力逐渐减小,即桩长0.3 m断面处是桩身的一个中性点;轴力在整个桩长范围内呈非均匀变化,活动层内(0.3 m以上)桩身各截面的轴力差变化较大,多年冻土层内桩身各截面的轴力差变化较小. 将桩长30.0 cm处的轴力进行比较,结果如图8所示. 由图可以看出:桩身轴力与环境温度有密切的关系,随环境温度逐渐降低,桩身各截面的轴力均逐渐增大,当环境温度升高,桩身各截面的轴力均逐渐降低,其中,第16 天的桩身轴力最大,桩Z1、Z2、Z3在第16 天的轴力分别为5.66、4.56、4.01 kN;与桩Z1相比,桩Z2及桩Z3的轴力分别降低19.4%与27.5%.
图9为温度与桩侧切向应力沿深度的变化曲线. 由图可以看出:与桩身轴力的变化规律相似,活动层内的切向应力为方向向上的冻胀应力,且变化较剧烈,在冻深附近由正值转变为负值,永冻层内的切向应力为方向向下的冻结应力. 是由于随环境温度的降低,活动层内的土体冻结后产生向上的冻胀变形,桩基的存在对土体的自由冻胀产生约束作用,从而在桩侧产生向上的切向冻胀力,永冻层的土体对桩的向上运动或运动趋势有抑制作用,导致桩土之间的冻结应力发挥作用;切向冻胀力的最大值出现在地表附近,桩Z1、Z2、Z3在第16 天的最大切向冻胀应力分别为157.2、153.5、159.4 kPa;活动层内的平均切向冻胀应力为109.3、106.4、97.7 kPa.
3.3 桩型对切向冻胀力的影响分析与讨论
由冻结过程桩基的受力特点可知,桩基冻深处的轴力为切向冻胀总力. 3种桩基础的冻深Zn均约为0.3 m,表1为不同桩型模型桩的受力情况对比. 表中: S 为冻深范围内桩和冻土的接触面积,F为桩基的切向冻胀总力, τ为冻深范围内各桩平均切向冻胀应力. 由表可以看出:桩型的改变可明显降低F,桩Z3的切向冻胀总力最小,桩Z2次之. 桩Z1、Z2、Z3切向冻胀总力之比为1.00∶0.81∶0.71,与S之比呈正相关,且比值接近,τ 之比约等于1∶1∶1.
表 1 不同桩型模型桩的受力对比Table 1. Stress comparison of model piles in different shapes桩 Zn/m S/cm2 F/kN τ/kPa Z1 0.3 518 5.66 109.3 Z2 0.3 447 4.56 106.4 Z3 0.3 427 4.01 97.7 环境温度降低时,桩周土体逐层自上而下低发生冻结. 以第1层土冻结时对桩基的作用力进行分析:当土体冻结时,产生竖向冻胀力V1和水平冻胀力H1,每层土的厚度为ΔH,桩基锥角为 β,如图10所示.
将V1和H1沿桩侧与垂直桩侧分解,则第1层土体作用于桩基础的切向应力和法向应力分别为
{τ1=V1cosβΔH+H1sinβΔH,σ1=H1cosβΔH−V1sinβΔH. (3) 结合式(3)与表1,直(曲)锥柱形桩比等截面圆形桩的抗冻拔效果好的主要原因可归纳为以下2点:
1) 由于锥形桩桩侧斜面的存在,改变了桩基的受力状态,式(3)中V1sin β 表现为拉应力,导致桩侧水平应力减小. 冻土桩基接触面的抗剪强度与法向应力的大小呈正相关. 因此,锥形桩桩土界面的极限抗剪强度相比于等截面桩较低,更易达到极限抗剪强度.
2) 随着桩周土体冻胀变形的发展,若桩土界面达到极限强度,则桩土界面产生滑移. 冻深范围内各桩平均切向冻胀应力的差异较小,但曲锥柱形桩与冻土的接触面积最小,从而导致曲锥柱形桩的切向冻胀总力最小,抗冻拔效果最好.
4. 结 论
1) 路基体的冻结(融化)受路基顶面与边坡 的2个方向冷(热)量的共同影响,是一个二维冻结(融化)问题,接触网支柱桩基础路基与边坡两侧的温度场是非对称分布的,桩基附近的最大融深约为 30.0 cm,边坡测温孔的最大融深约为15.0 cm.
2) 土体与桩顶的位移均与环境温度的变化密切相关. 路基土体的二维冻结现象导致路肩处的冻胀位移最大,路基、路肩及边坡处土体最大冻胀量分别为2.2、4.3、3.1 mm. 等截面圆形桩的竖向冻拔量为0.26 mm,直锥柱形桩与曲锥柱形桩的竖向冻拔量仅为Z1的46%、58%,3根桩的桩顶均产生约为0.10 mm的水平冻胀量.
3) 活动层土体在冻结过程中桩基础整体受拉,冻深处的轴力最大. 等截面圆形桩的最大切向冻胀总力为5.66 kN,与等截面圆形桩相比,直锥柱形桩与曲锥柱形桩分别降低19.4%与27.5%. 切向应力在活动层内为方向向上的切向冻胀应力,永冻层内为方向向下的冻结应力,切向冻胀应力的最大值出现在地表附近.
4) 桩周土体冻融作用下,曲锥柱形桩具有竖向冻拔位移小、切向冻胀总力小的特点,即曲锥柱形桩具有较好的抗冻拔效果. 研究成果可为多年冻土区铁路电气化接触网支柱基础的抗冻拔设计提供参考.
-
表 1 不同动力混合型式的比较
Table 1. Comparison of different power hybrid types
类别 优势 劣势 串联电液混合动力 电机与机械负载解耦并无级调速、保护蓄电池、布局灵活 能量多次转化导致利用率低、系统惯性负载大 并联电液混合动力 能量损失小、驱动效率高、结构简单 电机工作环境难以调节、控制复杂 混联电液混合动力 能量利用率高、动力性能好、布局灵活、有效保护蓄电池 结构复杂、控制难度大 表 2 不同控制策略的优缺点对比及其应用
Table 2. Comparison of the advantages and disadvantages of different control strategies and their applications
类别 优势 劣势 应用 基于确定规则控制 结构简单、控制响应快速 控制参数选取依赖经验 各种混合动力车辆 基于模糊规则控制 具有较强适应性,易于应用 需人为优化,适用范围小 部分混合动力车辆 瞬时优化控制 易获近似最优解,性能好 计算量较大,控制复杂 部分混合动力试验车 全局优化控制 易获理论最优解,无需校正 需预知大量行驶信息,计算量大 多用于引导简单控制
策略的制定 -
[1] KWON H, IVANTYSYNOV A M. Experimental and the oretical studies on energy characteristics of hydraulic hybrids for thermal management[J]. Energy, 2021, 223: 120033.1-120033.13. [2] OSMAN M, MEHREZ M W, DAOUD M A, et al. A generic multi-sensor fusion scheme for localization of autonomous platforms using moving horizon estimation[J]. Transactions of the Institute of Measurement and Control, 2021, 43(15): 3413-3427. doi: 10.1177/01423312211011454 [3] ZHU Y Y. The key technologies for powertrain system of intelligent vehicles based on switched reluctance motors[M]. Singapore: Springer, 2022. [4] LI Y Y, WANG S Q, DUAN X B, et al. Multi-objective energy management for Atkinson cycle engine and series hybrid electric vehicle based on evolutionary NSGA-II algorithm using digital twins[J]. Energy Conversion and Management, 2021, 230: 113788.1-113788.19. [5] TAN W, XIE S H, CAI Y D, et al. Transformation of highly stable Pt single sites on defect engineered ceria into robust Pt clusters for vehicle emission control[J]. Environmental Science & Technology, 2021, 55(18): 12607-12618. [6] MA M, MENG W D, LI Y Y, et al. Impact of dual credit policy on new energy vehicles technology innovation with information asymmetry[J]. Applied Energy, 2023, 332(15): 120524.1-120524.14. [7] ZHOU H C, XU Z P, LIU L, et al. Design and validation of a novel hydraulic hybrid vehicle with wheel motors[J]. Science Progress, 2020, 103(1): 36850419878024.1-36850419878024.11. [8] LI C S, CHEN L, WANG X, et al. Energy-saving system of secondary balance for the hybrid power of the pumping unit[J]. The Journal of Engineering, 2019, 2019(13): 190-195. doi: 10.1049/joe.2018.9013 [9] QI C Y, ZHU Y W, SONG C X, et al. Self-supervised reinforcement learning-based energy management for a hybrid electric vehicle[J]. Journal of Power Sources, 2021, 514: 230584.1-230584.10. [10] CHEN J X, SHU H, TANG X L, et al. Deep reinforcement learning-based multi-objective control of hybrid power system combined with road recognition under time-varying environment[J]. Energy, 2022, 239: 122123.1-122123.15. [11] JUFRI F H, ARYANI D R, GARNIWA I, et al. Optimal battery energy storage dispatch strategy for small-scale isolated hybrid renewable energy system with different load profile patterns[J]. Energies, 2021, 14(11): 3139.1-3139.19. [12] AKPOLAT A N, DURSUN E, SIANO P. Inverter-based modeling and energy efficiency analysis of off-grid hybrid power system in distributed generation[J]. Computers & Electrical Engineering, 2021, 96: 107476.1-107476.13. [13] LI C S, WANG X, WANG J Y, et al. Research on variable pressure characteristics of step variable hydraulic hybrid system based on cartridge value group[J]. The Journal of Engineering, 2019, 2019(13): 415-420. doi: 10.1049/joe.2018.9333 [14] MENG Z W, ZHANG H X, YANG J, et al. Research on matching of power transmission system of electro-hydraulic hybrid electric vehicle[J]. IOP Conference Series: Earth and Environmental Science, 2021, 632(3): 032007.1-032007.9. [15] URISHEV B, BEYTULLAYEVA R, UMIROV А, et al. Hydraulic energy storage of wind power plants[J]. E3S Web of Conferences, 2021, 264: 04053.1-04053.9. doi: 10.1051/e3sconf/202126404053 [16] 刘昕晖,李春爽,陈琳,等. 游梁式抽油机节能技术综述[J]. 吉林大学学报(工学版),2021,51(1): 1-26. doi: 10.13229/j.cnki.jdxbgxb20190951LIU Xinhui, LI Chunshuang, CHEN Lin, et al. Review of energy saving technologies for beam pumping units[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 1-26. doi: 10.13229/j.cnki.jdxbgxb20190951 [17] WANG C Y, ZHAO W Z, LI W K, et al. Multi-objective optimisation of electro-hydraulic braking system based on MOEA/D algorithm[J]. IET Intelligent Transport Systems, 2019, 13(1): 183-193. doi: 10.1049/iet-its.2018.5090 [18] LE SOLLIEC G, CHASSE A, VAN-FRANK J, et al. Dual mode vehicle with in-wheel motor: regenerative braking optimization[J]. Oil & Gas Science and Technology-Revue d’IFP Energies Nouvelles, 2013, 68(1): 95-108. [19] SHI B F, XIONG L, YU Z P. Pressure estimation of the electro-hydraulic brake system based on signal fusion[J]. Actuators, 2021, 10(9): 240.1-240.19. [20] SHI B F, XIONG L, YU Z P. Pressure estimation based on vehicle dynamics considering the evolution of the brake linings’ coefficient of friction[J]. Actuators, 2021, 10(4): 76.1-76.20. [21] HU J Y, LI J Q, HU Z Y, et al. Power distribution strategy of a dual-engine system for heavy-duty hybrid electric vehicles using dynamic programming[J]. Energy, 2021, 215: 118851.1-118851.15. [22] 曾小华,崔臣,张轩铭,等. 液压轮毂马达辅助驱动系统控制策略实车验证[J]. 哈尔滨工业大学学报,2020,52(1): 50-55. doi: 10.11918/201810050ZENG Xiaohua, CUI Chen, ZHANG Xuanming, et al. Verification of control strategy of hydraulic hub-motor auxiliary system on actual vehicle[J]. Journal of Harbin Institute of Technology, 2020, 52(1): 50-55. doi: 10.11918/201810050 [23] BARAKAT A A, DIAB J H, BADAWI N S, et al. Combined cycle gas turbine system optimization for extended range electric vehicles[J]. Energy Conversion and Management, 2020, 226: 113538.1-113538.18. [24] XU H, YUAN Y B, WANG H W. Plug-in hybrid electric vehicle utility factor in China cities: influencing factors, empirical research, and energy and environmental application[J]. eTransportation, 2021, 10: 100138.1-100138.14. [25] CHOUDHARI V G, DHOBLE A S, PANCHAL S. Numerical investigation on thermal behaviour of 5 × 5 cell configured battery pack using phase change material and fin structure layout[J]. Journal of Energy Storage, 2021, 43: 103234.1-103234.15. [26] ZHANG B, ZHANG J Y, Shen T L. Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode[J]. Applied Energy, 2022, 305: 117885.1-117885.17. [27] LIU H L, JIANG Y, LI S. Design and downhill speed control of an electric-hydrostatic hydraulic hybrid powertrain in battery-powered rail vehicles[J]. Energy, 2019, 187: 115957.1-115957.12. [28] BAER K, ERICSON L, KRUS P. Framework for simulation-based simultaneous system optimization for a series hydraulic hybrid vehicle[J]. International Journal of Fluid Power, 2018: 1-13. [29] 冯磊,刘桓龙. 轨道车的电液混合功率迁移与耦合特性[J]. 液压与气动,2018(6): 88-93. doi: 10.11832/j.issn.1000-4858.2018.06.017FENG Lei, LIU Huanlong. Electro-hydraulic hybrid power transfer and coupling characteristics of rail vehicle[J]. Chinese Hydraulics & Pneumatics, 2018(6): 88-93. doi: 10.11832/j.issn.1000-4858.2018.06.017 [30] HE Y P, FAN A L, WANG Z, et al. Two-phase energy efficiency optimisation for ships using parallel hybrid electric propulsion system[J]. Ocean Engineering, 2021, 238: 109733.1-109733.12. [31] 孙魁. 基于测功机加载的液压混合动力模拟试验台[D]. 长春: 吉林大学, 2019. [32] 董兵兵. CVT并联混合动力汽车能量优化与模式切换协调控制研究[D]. 长春: 吉林大学, 2019. [33] 丁静. 重载工程车辆并联式液压混合动力系统设计与控制研究[D]. 杭州: 浙江大学, 2019. [34] 孟凡涛. 并联液压混合动力汽车城市循环工况能量回收特性研究[D]. 秦皇岛: 燕山大学, 2019. [35] 张浩翔. 功率分流型液压变速器特性及系统应用方法研究[D]. 杭州: 浙江大学, 2019. [36] CHEN G P, LIU H L. Design and energy utilization of electro-hydrostatic hydraulic hybrid system for battery bus[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(2/3): 759-772. [37] 王炳超. 液压混合动力垃圾车的动力系统设计与仿真研究[D]. 青岛: 青岛大学, 2017. [38] 洪健. 多级串联复合电源再生制动系统设计与仿真研究[D]. 镇江: 江苏大学, 2020. [39] 方桂花,王鹤川,曾标,等. 电机发电特性优化再生制动控制策略的方法[J]. 机械设计与制造,2021(1): 134-137. doi: 10.3969/j.issn.1001-3997.2021.01.031FANG Guihua, WANG Hechuan, ZENG Biao, et al. Method of optimizing regenerative braking control strategy for motor generation characteristics[J]. Machinery Design & Manufacture, 2021(1): 134-137. doi: 10.3969/j.issn.1001-3997.2021.01.031 [40] 王茹洁,武志斐,邹纯. 纯电动物流车最优制动能量回收控制策略研究[J]. 机械设计与制造,2020(4): 301-304. doi: 10.3969/j.issn.1001-3997.2020.04.073WANG Rujie, WU Zhifei, ZOU Chun. Study on optimal braking energy recovery control strategy of pure electric logistics vehicle[J]. Machinery Design & Manufacture, 2020(4): 301-304. doi: 10.3969/j.issn.1001-3997.2020.04.073 [41] LIU H L, CHEN G P, LI D F, et al. Energy active adjustment and bidirectional transfer management strategy of the electro-hydrostatic hydraulic hybrid powertrain for battery bus[J]. Energy, 2021, 230: 120794.1-120794.14. [42] ZHOU S L, PAUL W, ZHANG N. Parametric design and regenerative braking control of a parallel hydraulic hybrid vehicle[J]. Mechanism and Machine Theory, 2020, 146: 103714.1-103714.15. [43] WU W, LIU H, ZHOU J J, et al. Energy efficiency of hydraulic regenerative braking for an automobile hydraulic hybrid propulsion method[J]. International Journal of Green Energy, 2019, 16(13): 1046-1053. doi: 10.1080/15435075.2019.1653875 [44] 马家启. 前置式液压混合动力车辆制动转矩控制的研究[D]. 长春: 吉林大学, 2019. [45] 王波. 复合蓄能器液压混合动力系统匹配方法及控制策略研究[D]. 秦皇岛: 燕山大学, 2019. [46] 张涛,何晓晖,王强,等. 轮边驱动液压混合动力车辆能量回收系统性能研究[J]. 液压与气动,2019(10): 90-96. doi: 10.11832/j.issn.1000-4858.2019.10.015ZHANG Tao, HE Xiaohui, WANG Qiang, et al. Research on energy recovery system of wheel drive hydraulic hybrid vehicle[J]. Chinese Hydraulics & Pneumatics, 2019(10): 90-96. doi: 10.11832/j.issn.1000-4858.2019.10.015 [47] 李柏林. 混合动力汽车再生制动与防抱死系统协调控制研究[D]. 重庆: 重庆大学, 2019. [48] 李光政. 搭载制动电子助力器的四驱混合动力汽车电液复合制动系统研究[D]. 重庆: 重庆大学, 2019. [49] 刘延旭. 液压混合动力式半挂汽车列车稳定性研究[D]. 济南: 齐鲁工业大学, 2019. [50] 曾小华,李广含,宋大凤,等. 重型车辆液压再生制动能量回收率的研究[J]. 汽车工程,2017,39(7): 729-735. doi: 10.19562/j.chinasae.qcgc.2017.07.001ZENG Xiaohua, LI Guanghan, SONG Dafeng, et al. A research on the energy recovery rate of hydraulic regenerative braking for heavy vehicle[J]. Automotive Engineering, 2017, 39(7): 729-735. doi: 10.19562/j.chinasae.qcgc.2017.07.001 [51] 蒋越. 蓄电池液压混合动力轨道工程车的再生和复合制动特性研究[D]. 成都: 西南交通大学, 2019. [52] WALDEMAR L. A new type of hydrokinetic accumulator and its simulation in hydraulic lift with energy recovery system[J]. Energy, 2018, 153: 836-848. doi: 10.1016/j.energy.2018.04.040 [53] 李顺,刘桓龙,陈冠鹏. 不同液压能耦合模式下蓄电池轨道工程车的加速功率特性[J]. 中国机械工程,2020,31(12): 1452-1460.LI Shun, LIU Huanlong, CHEN Guanpeng. Acceleration power characteristics of battery track engineering vehicles under different hydraulic energy coupling modes[J]. China Mechanical Engineering, 2020, 31(12): 1452-1460. [54] 刘桓龙,李顺,谢迟新. 基于液压泵/马达逆向驱动的电机启动电流控制方法[J]. 西南交通大学学报,2021,56(4): 720-729.LIU Huanlong, LI Shun, XIE Chixin. A method of motor starting current control based on hydraulic pump/motor reverse driving[J]. Journal of Southwest Jiaotong University, 2021, 56(4): 720-729. [55] LEI Z Z, QIN D T, LIU Y G, et al. Dynamic energy management for a novel hybrid electric system based on driving pattern recognition[J]. Applied Mathematical Modelling, 2017, 45: 940-954. doi: 10.1016/j.apm.2017.01.036 [56] ZHOU Y, RAVEY A, PéRA M-C. Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer[J]. Applied Energy, 2020, 258: 114057.1-114057.17. [57] RUAN J G, SONG Q, YANG W W. The application of hybrid energy storage system with electrified continuously variable transmission in battery electric vehicle[J]. Energy, 2019, 183: 315-330. doi: 10.1016/j.energy.2019.06.095 [58] LIN X Y, FENG Q G, MO L P, et al. Optimal adaptation equivalent factor of energy management strategy for plug-in CVT HEV[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(4): 877-889. doi: 10.1177/0954407018755612 [59] GAO J P, XU Z H, GAO X J. Control strategy for PHEB based on actual driving cycle with driving style characteristic[J]. Journal of Control Science and Engineering, 2019, 2019: 1-14. [60] DU Z K, CHEONG K L, LI P Y. Energy management strategy for a power-split hydraulic hybrid vehicle based on Lagrange multiplier and its modifications[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019, 233(5): 511-523. doi: 10.1177/0959651818801416 [61] RANA L B, SHRESTHA A, PHUYAL S, et al. Design and performance evaluation of series hybrid electric vehicle using backward model[J]. The Journal of Engineering, 2020, 2020(11): 1095-1102. doi: 10.1049/joe.2019.1314 [62] LIU H L, CHEN G P, XIE C X, et al. Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles[J]. Energy, 2020, 205: 118079.1-118079.13. [63] CHEN Y Q, LIU X H, WANG X, et al. Control strategies and optimization analyses of front-mounted parallel system[J]. Cluster Computing, 2019, 22(3): 5151-5163. [64] 余忠云. 基于复合蓄能器的液压混合动力汽车节能机理分析[D]. 秦皇岛: 燕山大学, 2019. [65] ZHOU H C, XU Z P, LIU L, et al. A rule-based energy management strategy based on dynamic programming for hydraulic hybrid vehicles[J]. Mathematical Problems in Engineering, 2018: 1-10. [66] 刘桓龙,蒋越,李志伟. 基于模糊PID的轨道工程车下坡缓速控制[J]. 液压与气动,2020(2): 78-85. doi: 10.11832/j.issn.1000-4858.2020.02.012LIU Huanlong, JIANG Yue, LI Zhiwei. Downhill speed control of the railway engineering vehicles based on fuzzy PID[J]. Chinese Hydraulics & Pneumatics, 2020(2): 78-85. doi: 10.11832/j.issn.1000-4858.2020.02.012 [67] 傅必升. 基于双蓄能器的液压再生制动能量回收系统研究和优化[D]. 杭州: 浙江工业大学, 2019. [68] ZHOU H, ZHAO P Y, CHEN Y L. Fuzzy logic control for a hydraulic hybrid excavator based on torque prediction and genetic algorithm optimization[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2018, 232(8): 983-994. doi: 10.1177/0954407017724590 [69] YANG Y, ZHANG Y T, TIAN J Y, et al. Adaptive real-time optimal energy management strategy for extender range electric vehicle[J]. Energy, 2020, 197: 117237.1-117237.14. [70] 杨业,张幽彤,张彪,等. 基于等效因子优化的插电式混合动力客车自适应能量管理策略[J]. 汽车工程,2020,42(3): 292-298,306. doi: 10.19562/j.chinasae.qcgc.2020.03.003YANG Ye, ZHANG Youtong, ZHANG Biao, et al. Adaptive energy management strategy for plug-in hybrid ElectricBus based on equivalent factor optimization[J]. Automotive Engineering, 2020, 42(3): 292-298,306. doi: 10.19562/j.chinasae.qcgc.2020.03.003 [71] DONATEO T, DE PASCALIS C L, FICARELLA A. An application of the ECMS strategy to a wankel hybrid electric UAV[J]. MATEC Web of Conferences, 2019, 304: 03010.1-03010.8. [72] LI X M, HAN L J, LIU H, et al. Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm[J]. Energy, 2019, 172: 1161-1178. doi: 10.1016/j.energy.2019.01.052 [73] 孙可华. 双行星排混联式液压混合动力汽车的能量优化与协调控制[D]. 长春: 吉林大学, 2019. [74] WILLIAMS K, IVANTYSYNOVA M. Approximate stochastic differential dynamic programming for hybrid vehicle energy management[J]. Journal of Dynamic Systems, Measurement, and Control, 2019, 141(5): 051003.1-051003.9. [75] 刘洋,林慕义,陈勇. 液压混合动力工程车辆联合制动系统优化与仿真[J]. 机床与液压,2019,47(1): 104-108. doi: 10.3969/j.issn.1001-3881.2019.01.024LIU Yang, LIN Muyi, CHEN Yong. Optimization and simulation for combined braking system of hydraulic hybrid electric vehicle[J]. Machine Tool & Hydraulics, 2019, 47(1): 104-108. doi: 10.3969/j.issn.1001-3881.2019.01.024 [76] 陈有权. 前置并联式液压混合动力起重机制动能量管理及控制策略研究[D]. 长春: 吉林大学, 2018. [77] SPRENGEL M, IVANTYSYNOVA M. Neural network based power management of hydraulic hybrid vehicles[J]. International Journal of Fluid Power, 2017, 18(2): 79-91. doi: 10.1080/14399776.2016.1232117 [78] 樊伟,刘天琦. 采用动态规划算法优化的液压混合动力车辆能源消耗仿真研究[J]. 中国工程机械学报,2018,16(6): 526-530. doi: 10.15999/j.cnki.311926.2018.06.011FAN Wei, LIU Tianqi. Simulation study on energy consumption of hydraulic hybrid vehicle optimized by dynamic programming algorithm[J]. Chinese Journal of Construction Machinery, 2018, 16(6): 526-530. doi: 10.15999/j.cnki.311926.2018.06.011 [79] 李洪亮,朱灯林,李洪璠. 液压混合动力矿用卡车系统参数多目标优化研究[J]. 液压与气动,2018(10): 70-77. doi: 10.11832/j.issn.1000-4858.2018.10.012LI Hongliang, ZHU Denglin, LI Hongfan. Multi-objective optimization of hydraulic hybrid mining truck system parameters[J]. Chinese Hydraulics & Pneumatics, 2018(10): 70-77. doi: 10.11832/j.issn.1000-4858.2018.10.012 [80] ZHAO W Z, LUAN Z K, WANG C Y. Parametric optimization of novel electric-hydraulic hybrid steering system based on a shuffled particle swarm optimization algorithm[J]. Journal of Cleaner Production, 2018, 186: 865-876. doi: 10.1016/j.jclepro.2018.03.180 [81] 尹晨辉. 商用车混合动力电控转向系统性能研究与优化设计[D]. 镇江: 江苏大学, 2019. [82] 郭斌,李金成,陈虹,等. 基于改进全局优化算法的轮毂液压动力系统能量管理策略[J]. 中国公路学报,2020,33(8): 23-30. doi: 10.19721/j.cnki.1001-7372.2020.08.003GUO Bin, LI Jincheng, CHEN Hong, et al. Energy management strategy of hydraulic hub-motor hybrid system based on improved global optimization algorithm[J]. China Journal of Highway and Transport, 2020, 33(8): 23-30. doi: 10.19721/j.cnki.1001-7372.2020.08.003 [83] 高锋阳,张浩然,王文祥,等. 规则控制与行驶工况相结合的现代有轨电车能量管理策略[J]. 机械工程学报,2023,59(4): 221-231.GAO Fengyang, ZHANG Haoran, WANG Wenxiang, et al. Modern tram energy management strategy combining rule control and driving conditions[J]. Chinese Journal of Mechanical Engineering, 2023, 59(4): 221-231. [84] 曾晓帆,胡明辉,徐磊. 基于实车试验大数据分析的插电式混合动力汽车能量管理策略解析[J]. 重庆大学学报,2023,46(2): 11-29,42.ZENG Xiaofan, HU Minghui, XU Lei. Analysis of plug-in hybrid electric vehicle energy management strategy based on big data analysis of real vehicle test[J]. Journal of Chongqing University, 2023, 46(2): 11-29,42. -