• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

漏斗型峡谷桥址区平均风特性的数值模拟

张明金 邢龙飞 蒋帆影 张金翔 李永乐

张明金, 邢龙飞, 蒋帆影, 张金翔, 李永乐. 漏斗型峡谷桥址区平均风特性的数值模拟[J]. 西南交通大学学报, 2023, 58(2): 381-387. doi: 10.3969/j.issn.0258-2724.20211006
引用本文: 张明金, 邢龙飞, 蒋帆影, 张金翔, 李永乐. 漏斗型峡谷桥址区平均风特性的数值模拟[J]. 西南交通大学学报, 2023, 58(2): 381-387. doi: 10.3969/j.issn.0258-2724.20211006
ZHANG Mingjin, XING Longfei, JIANG Fanying, ZHANG Jinxiang, LI Yongle. Numerical Simulation of Mean Wind Characteristics at Bridge Site in Funnel-Shaped Canyon Terrain[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 381-387. doi: 10.3969/j.issn.0258-2724.20211006
Citation: ZHANG Mingjin, XING Longfei, JIANG Fanying, ZHANG Jinxiang, LI Yongle. Numerical Simulation of Mean Wind Characteristics at Bridge Site in Funnel-Shaped Canyon Terrain[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 381-387. doi: 10.3969/j.issn.0258-2724.20211006

漏斗型峡谷桥址区平均风特性的数值模拟

doi: 10.3969/j.issn.0258-2724.20211006
基金项目: 国家自然科学基金(52278533,51708464)
详细信息
    作者简介:

    张明金(1984—),男,研究员,博士,研究方向为桥梁抗风,E-mail:zhang-minjin@swjtu.edu.cn

  • 中图分类号: U442.59

Numerical Simulation of Mean Wind Characteristics at Bridge Site in Funnel-Shaped Canyon Terrain

  • 摘要:

    结合某大跨悬索桥所在山区地形,研究了漏斗型峡谷这一特殊构造地形的桥址区平均风特性,为大跨度桥梁在漏斗型峡谷地区的抗风设计提供依据. 首先,建立实际地形的数值模型,并利用Fluent软件对24个不同来流工况进行比较分析;然后,将整体模拟结果与实测结果进行对比,验证数值模拟的合理性;最后,通过模拟结果的对比分析,探讨漏斗型峡谷桥位对风速大小、风攻角、风向角在不同来流方向的影响规律,分析平均风速随攻角分布的特点以及不同位置处的竖向风剖面特性. 研究结果表明:漏斗型峡谷桥址区存在明显峡谷风加速效应;漏斗型地形对桥址区来流的攻角和风向分别表现为弱扰乱性和高导向性,来流攻角和风向分别稳定集中在−5°~0° 和25°~30°;峡谷中风速对攻角变化的敏感性更高.

     

  • 图 1  桥址区地形数值模型

    Figure 1.  Numerical topography model of the bridge site

    图 2  计算区域网格划分(单位:km)

    Figure 2.  Meshing for computational domain (unit: km)

    图 3  入口风速随高度的变化

    Figure 3.  Variation of inlet wind velocity with height

    图 4  风速测试点分布示意

    Figure 4.  Locations of wind velocity observation points

    图 5  来流风向示意

    Figure 5.  Schematic of wind flow directions

    图 6  不同来流方向风速玫瑰图(单位:m/s)

    Figure 6.  Rose diagram of wind velocity in different flow directions (unit: m/s)

    图 7  工况14的桥位高度处入流风速分布云图

    Figure 7.  Nephogram of wind speed distribution of incoming flow at bridge height in case 14

    图 8  桥位处实测风速日平均最大风向分布

    Figure 8.  Wind direction distribution of daily mean maximum wind velocity at bridge site

    图 9  不同来流方向主梁平均风攻角玫瑰图(单位:(°))

    Figure 9.  Rose diagram of average wind attack angle along bridge deck in different flow directions (unit: ( ° ) )

    图 10  不同来流方向主梁平均风向角玫瑰图(单位:(°))

    Figure 10.  Rose diagram of average wind direction angle along bridge deck in different flow directions (unit: ( ° ) )

    图 11  各类工况风速随风攻角分布

    Figure 11.  Variation of wind velocity with wind attack angle under different cases

    图 12  典型工况下不同位置风剖面对比

    Figure 12.  Comparison of wind profiles at different locations under typical cases

    图 13  复合风速标准

    Figure 13.  Composite wind speed standard

    表  1  工况类别划分

    Table  1.   Case classification

    工况类型类型描述工况
    从西往东反向吹向桥位1~6
    南北向来流受到山体的阻挡7~12、19~24
    从东往西吹向漏斗型峡谷13~18
    下载: 导出CSV

    表  2  大风速工况

    Table  2.   Cases at high wind velocity

    工况工况类型风速大小/(m·s−1放大系数
    338.870.96
    1339.250.97
    1444.681.10
    1544.671.10
    1645.661.12
    1741.751.03
    注:风速放大系数为主梁桥面处的平均风速大小与入口处桥面高度风速大小的比值.
    下载: 导出CSV
  • [1] 吴联活,张明金,李永乐,等. 复杂山区地形桥址区风特性的数值模拟[J]. 西南交通大学学报,2019,54(5): 915-922.

    WU Lianhuo, ZHANG Mingjin, LI Yongle, et al. Numerical simulation of wind characteristics at bridge sites in complex mountainous terrains[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 915-922.
    [2] 洪新民,郭文华,熊安平. 山区峡谷风场分布特性及地形影响的数值模拟[J]. 长安大学学报(自然科学版),2017,37(5): 56-64. doi: 10.19721/j.cnki.1671-8879.2017.05.008

    HONG Xinmin, GUO Wenhua, XIONG Anping. Numerical simulation of distribution characteristic of wind fields and terrain’s influence in mountain canyon[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 56-64. doi: 10.19721/j.cnki.1671-8879.2017.05.008
    [3] HU P, HAN Y, CAI C S, et al. Wind characteristics and flutter performance of a long-span suspension bridge located in a deep-cutting gorge[J]. Engineering Structures, 2021, 233: 111841.1-111841.15.
    [4] 李永乐,遆子龙,汪斌,等. 山区Y形河口附近桥址区地形风特性数值模拟研究[J]. 西南交通大学学报,2016,51(2): 341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013

    LI Yongle, TI Zilong, WANG Bin, et al. Numerical simulation of wind characteristics over bridge site near Y-shaped river junction in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 341-348. doi: 10.3969/j.issn.0258-2724.2016.02.013
    [5] 靖洪淼,廖海黎,周强,等. 一种山区峡谷桥址区风场特性数值模拟方法[J]. 振动与冲击,2019,38(16): 200-207. doi: 10.13465/j.cnki.jvs.2019.16.029

    JING Hongmiao, LIAO Haili, ZHOU Qiang, et al. A numerical simulation method for wind field characteristics of mountainous valley at bridge site[J]. Journal of Vibration and Shock, 2019, 38(16): 200-207. doi: 10.13465/j.cnki.jvs.2019.16.029
    [6] 李永乐,胡朋,蔡宪棠,等. 紧邻高陡山体桥址区风特性数值模拟研究[J]. 空气动力学学报,2011,29(6): 770-776. doi: 10.3969/j.issn.0258-1825.2011.06.014

    LI Yongle, HU Peng, CAI Xiantang, et al. Numerical simulation of wind characteristics above bridge site adjacent a high-steep mountain[J]. Acta Aerodynamica Sinica, 2011, 29(6): 770-776. doi: 10.3969/j.issn.0258-1825.2011.06.014
    [7] 胡朋,李永乐,廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学学报,2013,31(2): 231-238. doi: 10.7638/kqdlxxb-2011.0184

    HU Peng, LI Yongle, LIAO Haili. Shape of boundary transition section for mountains-gorge bridge site terrain model[J]. Acta Aerodynamica Sinica, 2013, 31(2): 231-238. doi: 10.7638/kqdlxxb-2011.0184
    [8] 张亮亮,吴波,杨阳,等. 山区桥址处CFD计算域的选取方法[J]. 土木建筑与环境工程,2015,37(5): 11-17.

    ZHANG Liangliang, WU Bo, YANG Yang, et al. Method of setting up the wind field of a mountain bridge site[J]. Journal of Civil, Architectural & Environmental Engineering, 2015, 37(5): 11-17.
    [9] 车凯,南硕,陈敏. 严寒及寒冷地区轨道交通高大厂房风幕阻风特性研究[J]. 暖通空调,2021,51(4): 18-22.

    CHE Kai, NAN Shuo, CHEN Min. Study on wind-resistance characteristics of wind curtains of rail transit tall workshops in severe cold and cold zones[J]. Heating Ventilating & Air Conditioning, 2021, 51(4): 18-22.
    [10] WANG L, CHEN X X, CHEN H. Research on wind barrier of canyon bridge-tunnel junction based on wind characteristics[J]. Advances in Structural Engineering, 2021, 24(5): 870-883. doi: 10.1177/1369433220971730
    [11] ZHANG M J, LI Y L, WANG B, et al. Numerical simulation of wind characteristics at bridge site considering thermal effects[J]. Advances in Structural Engineering, 2018, 21(9): 1313-1326. doi: 10.1177/1369433217742524
    [12] CHEN X Y, LIU Z W, WANG X G, et al. Experimental and numerical investigation of wind characteristics over mountainous valley bridge site considering improved boundary transition sections[J]. Applied Sciences, 2020, 10(3): 751.1-751.23.
    [13] 沈炼,韩艳,蔡春声,等. 基于谐波合成法的大涡模拟脉动风场生成方法研究[J]. 湖南大学学报(自然科学版),2015,42(11): 64-71. doi: 10.16339/j.cnki.hdxbzkb.2015.11.029

    SHEN Lian, HAN Yan, CAI Chunsheng, et al. Research on generating method of fluctuating wind field of LES based on WAWS[J]. Journal of Hunan University (Natural Sciences), 2015, 42(11): 64-71. doi: 10.16339/j.cnki.hdxbzkb.2015.11.029
    [14] HU W C, YANG Q S, CHEN H P, et al. Wind field characteristics over hilly and complex terrain in turbulent boundary layers[J]. Energy, 2021, 224: 120070.1-120070.14.
    [15] 吴广. 山区复杂地形下高墩多跨连续铁路钢桁梁桥的风场特性研究[J]. 铁道科学与工程学报,2019,16(1): 129-136. doi: 10.19713/j.cnki.43-1423/u.2019.01.018

    WU Guang. Numerical simulation of wind field for high-pier truss girder continuous bridges at complex terrain[J]. Journal of Railway Science and Engineering, 2019, 16(1): 129-136. doi: 10.19713/j.cnki.43-1423/u.2019.01.018
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  445
  • HTML全文浏览量:  128
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 修回日期:  2022-05-12
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2022-05-25

目录

    /

    返回文章
    返回