Vibration Energy Decoupling Method and Application for Flexible Double-Layer Vibration Isolation Systems
-
摘要:
为解决难以利用能量解耦法设计柔性双层隔振系统的问题,提出一种能够表示柔性设备和中间质量弹性模态特点的多自由度模型;基于该模型,提出采用广义弹性力对柔性隔振系统进行解耦的方法,并推广到柔性结构中;以某内燃动车动力总成双层隔振系统为例,基于所提方法探讨了构架弹性模态下刚体振动与弹性振动的耦合情况;最后通过振动实验台验证了该方法的有效性. 研究结果表明:机组一级隔振系统垂向频率从12 Hz降低到8 Hz后,系统所有模态频率均得到不同幅度的下降,前两阶刚体振动模态频率下降最明显,分别下降50.00%和49.98%;构架弹性模态频率比机组弹性模态频率更低,影响更大,构架弹性模态频率下降8.32%,机组弹性模态频率下降0.80%;在构架弹性振动模态振动中,构架弹性振动能量所占比例提高14.88%,刚体振动能量所占比例降低90.64%,降低一级隔振系统垂向频率能够提高振动解耦效果,减少振动传递.
Abstract:The original energy decoupling method is not suited to flexible double-layer vibration isolation systems, and therefore a multi-degree of freedom model is developed to represent the flexible characteristics of the equipment and intermediate mass. Then, on the basis of the model, a generalized elastic force is proposed to decouple the flexible vibration isolation system. The decoupling method is then extended to the study of flexible structures. Finally, using a two-layer vibration isolation system of a powertrain as an example, the method is adopted to evaluate the decoupling performance of the elastic mode of the frame. Finally, a vibration test was used to verify the effectiveness of this method. The results show that after the primary vertical frequency of the powerpack decreases from 12 Hz to 8 Hz, all of the modal frequencies of the system are reduced by different extents. The first two order frequencies of the rigid body vibration modes decreased by 50.00% and 49.98%, respectively. The elastic modal frequency of the frame has a greater impact because of its lower natural frequency compared with that of the diesel generator set. The elastic modal frequency of the frame decreased by 8.32%, and that of the diesel generator set decreased by 0.80%. In the elastic vibration mode vibration of the frame, the proportion of the elastic vibration energy of the frame could increase by 14.88%, and the proportion of the rigid body vibration energy could be reduced by 90.64%. Reducing the vertical frequency of the first stage vibration isolation system can improve the vibration decoupling effect and reduce the vibration transmission.
-
表 1 机组垂向频率变化对系统频率和解耦情况的影响
Table 1. Effect of vertical vibration frequencies of powertrain change on frequencies and decoupling of the system
fg/Hz 模态 频率/
Hz振动能量百分比/% 刚体
振动构架弹
性振动机组弹
性振动8 低阶刚体 11.54 100.00 0 0 高阶刚体 29.33 100.00 0 0 构架弹性 78.11 13.89 86.06 0.04 机组弹性 107.82 1.25 0.01 98.74 10 低阶刚体 14.43 100.00 0 0 高阶刚体 36.66 99.99 0.01 0 构架弹性 81.10 23.29 76.54 0.17 机组弹性 108.20 2.40 0.05 97.56 12 低阶刚体 17.31 100.00 0 0 高阶刚体 43.99 99.99 0.01 0 构架弹性 84.61 26.48 73.25 0.26 机组弹性 108.68 2.88 0.07 97.05 表 2 双层隔振系统振动烈度测试结果
Table 2. Test results for vibration intensity of double-layer isolation system
工况/
(r·min−1)功率/
kW机组 构架 振动烈度/
(mm·s−1)评定等级 振动烈度/
(mm·s−1)评定等级 900 37 6.35 A 3.93 A 1000 53 5.59 A 3.45 A 1100 70 7.02 A 3.90 A 1200 91 8.74 B 4.13 A 1400 144 9.07 B 4.46 A 1650 237 13.91 B 8.28 B 1800 307 15.45 B 8.54 B -
[1] JIN X, CHEN K K, JI J T, et al. Intelligent vibration detection and control system of agricultural machinery engine[J]. Measurement, 2019, 145: 503-510. doi: 10.1016/j.measurement.2019.05.059 [2] WANG M, HU Y Y, SUN Y, et al. An adjustable low-frequency vibration isolation Stewart platform based on electromagnetic negative stiffness[J]. International Journal of Mechanical Sciences, 2020, 181: 105714.14-105714.25. [3] SUN Y, GONG D, ZHOU J S, et al. Low frequency vibration control of railway vehicles based on a high static low dynamic stiffness dynamic vibration absorber[J]. Science China Technological Sciences, 2019, 62(1): 60-69. doi: 10.1007/s11431-017-9300-5 [4] 吕振华,范让林,冯振东. 汽车动力总成隔振悬置布置的设计思想论析[J]. 内燃机工程,2004,25(3): 37-43. doi: 10.3969/j.issn.1000-0925.2004.03.010LYU Zhenhua, FAN Ranglin, FENG Zhendong. A survey of design methods for automotive engine mounting system[J]. Chinese Internal Combustion Engine Engineering, 2004, 25(3): 37-43. doi: 10.3969/j.issn.1000-0925.2004.03.010 [5] SHANGGUAN W B. Engine mounts and powertrain mounting systems: a review[J]. International Journal of Vehicle Design, 2009, 49(4): 237-258. doi: 10.1504/IJVD.2009.024956 [6] CHO S. Configuration and sizing design optimisation of powertrain mounting systems[J]. International Journal of Vehicle Design, 2000, 24(1): 35-47. [7] WILLIAMS R, HENDERSON F, ALLMAN-WARD M, et al. Using an interactive NVH simulator for target setting and concept evaluation in a new vehicle programme[C]//SAE Technical Paper Series. Warrendale: SAE International, 2005: 2479.1-2479.12. [8] 范让林,吕振华. 刚体-弹性支承系统振动解耦评价方法分析[J]. 工程力学,2006,23(7): 13-18. doi: 10.3969/j.issn.1000-4750.2006.07.003FAN Ranglin, LYU Zhenhua. Evaluation approaches of vibration-mode uncoupling for multi-dof rigid-body with elastic mounting system[J]. Engineering Mechanics, 2006, 23(7): 13-18. doi: 10.3969/j.issn.1000-4750.2006.07.003 [9] HU J F, ZHU D D, CHEN J J, et al. Refined response axis decoupling axiom for a coupled vibrating system with spectrally-varying mount properties[J]. Journal of Vibration and Control, 2018, 24(15): 3233-3248. doi: 10.1177/1077546317735941 [10] PARK J Y, SINGH R. Effect of non-proportional damping on the torque roll axis decoupling of an engine mounting system[J]. Journal of Sound and Vibration, 2008, 313(3/4/5): 841-857. [11] SHANGGUAN W B, LIU X A, LV Z P, et al. Design method of automotive powertrain mounting system based on vibration and noise limitations of vehicle level[J]. Mechanical Systems and Signal Processing, 2016, 76/77: 677-695. doi: 10.1016/j.ymssp.2016.01.009 [12] 陈俊,闫兵,董大伟,等. 子系统参数对双层隔振系统固有特性的影响[J]. 振动与冲击,2015,34(4): 110-116. doi: 10.13465/j.cnki.jvs.2015.04.019CHEN Jun, YAN Bing, DONG Dawei, et al. Effects of subsystem parameters on natural characteristics of a double-layer vibration isolation system[J]. Journal of Vibration and Shock, 2015, 34(4): 110-116. doi: 10.13465/j.cnki.jvs.2015.04.019 [13] 孙玉华,董大伟,闫兵,等. 双层隔振系统解耦优化研究[J]. 振动.测试与诊断,2014,34(2): 361-365,402.SUN Yuhua, DONG Dawei, YAN Bing, et al. Design and decoupling optimization of two-stage vibration isolation system[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(2): 361-365,402. [14] WANG Z, MAK C M. Optimization of geometrical parameters for periodical structures applied to floating raft systems by genetic algorithms[J]. Applied Acoustics, 2018, 129: 108-115. doi: 10.1016/j.apacoust.2017.07.018 [15] WU K, LIU Z W, DING Q, et al. Vibration responses of rotor systems in diesel multiple units under dynamic spatial misalignments and base motions[J]. Journal of Sound and Vibration, 2021, 492: 115-127. [16] ZHOU H, LIU H, GAO P, et al. Optimization design and performance analysis of vehicle powertrain mounting system[J]. Chinese Journal of Mechanical Engineering, 2018, 31: 1-13. doi: 10.1186/s10033-018-0219-4 [17] EL HAFIDI A, MARTIN B, LOREDO A, et al. Vibration reduction on city buses: determination of optimal position of engine mounts[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 2198-2209. doi: 10.1016/j.ymssp.2010.04.001 [18] JIANG M, LIAO S S, GUO Y, et al. The improvement on vibration isolation performance of hydraulic excavators based on the optimization of powertrain mounting system[J]. Advances in Mechanical Engineering, 2019, 11(5): 86-102. [19] ANGROSCH B, PLÖCHL M, REINALTER W. Mode decoupling concepts of an engine mount system for practical application[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2015, 229(4): 331-343. doi: 10.1177/1464419314564020 [20] 胡金芳,陈无畏,叶先军. 计及弹性支撑的汽车动力总成悬置系统解耦研究[J]. 中国机械工程,2012,23(23): 2879-2885. doi: 10.3969/j.issn.1004-132X.2012.23.022HU Jinfang, CHEN Wuwei, YE Xianjun. Decoupling study of a powertrain mounting system with effect of a compliant base[J]. China Mechanical Engineering, 2012, 23(23): 2879-2885. doi: 10.3969/j.issn.1004-132X.2012.23.022 [21] 胡金芳. 计及弹性基础的动力总成悬置系统特性分析与解耦研究[D]. 合肥: 合肥工业大学, 2012. [22] 吕振华,范让林. 动力总成-悬置系统振动解耦设计方法[J]. 机械工程学报,2005,41(4): 49-54. doi: 10.3321/j.issn:0577-6686.2005.04.010LYU Zhenhua, FAN Ranglin. Design method for vibration uncoupling of powerplantmounting system[J]. Chinese Journal of Mechanical Engineering, 2005, 41(4): 49-54. doi: 10.3321/j.issn:0577-6686.2005.04.010 [23] 童炜,侯之超. 关于动力总成悬置系统模态能量表达的一个注记[J]. 汽车工程,2013,35(3): 224-228. doi: 10.3969/j.issn.1000-680X.2013.03.006TONG Wei, HOU Zhichao. A note on the modal energy expressions for powertrain mounting systems[J]. Automotive Engineering, 2013, 35(3): 224-228. doi: 10.3969/j.issn.1000-680X.2013.03.006 [24] 闫兵, 贾尚帅, 王铁成. 内燃动车动力总成振动控制技术及其应用[M]. 成都: 西南交通大学出版社, 2020: 188-189. [25] 周宇杰,雷刚,贺艳辉,等. 基于惯性参数的动力总成悬置系统解耦分析[J]. 噪声与振动控制,2017,37(6): 94-97. doi: 10.3969/j.issn.1006-1355.2017.06.019ZHOU Yujie, LEI Gang, HE Yanhui, et al. Decoupling analysis of powertrain mount systems based on inertial parameters[J]. Noise and Vibration Control, 2017, 37(6): 94-97. doi: 10.3969/j.issn.1006-1355.2017.06.019 [26] 铁道部标准所. 柴油机车车内设备机械振动烈度评定方法: GB/T 5913—1986 [S]. 北京: 中国标准出版社, 2004.