• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

T2T和T2G混合网络中的功率分配算法

高云波 程璇 李翠然 田智愚 王国荣

高云波, 程璇, 李翠然, 田智愚, 王国荣. T2T和T2G混合网络中的功率分配算法[J]. 西南交通大学学报, 2023, 58(5): 1126-1134, 1179. doi: 10.3969/j.issn.0258-2724.20210992
引用本文: 高云波, 程璇, 李翠然, 田智愚, 王国荣. T2T和T2G混合网络中的功率分配算法[J]. 西南交通大学学报, 2023, 58(5): 1126-1134, 1179. doi: 10.3969/j.issn.0258-2724.20210992
GAO Yunbo, CHENG Xuan, LI Cuiran, TIAN Zhiyu, WANG Guorong. Power Allocation Algorithm in T2T and T2G Hybrid Network[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1126-1134, 1179. doi: 10.3969/j.issn.0258-2724.20210992
Citation: GAO Yunbo, CHENG Xuan, LI Cuiran, TIAN Zhiyu, WANG Guorong. Power Allocation Algorithm in T2T and T2G Hybrid Network[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1126-1134, 1179. doi: 10.3969/j.issn.0258-2724.20210992

T2T和T2G混合网络中的功率分配算法

doi: 10.3969/j.issn.0258-2724.20210992
基金项目: 国家自然科学基金(62161016,61661025,52167013);甘肃省自然科学基金(20JR10RA210); 甘肃省科技计划(20JR10RA273)
详细信息
    作者简介:

    高云波(1980—),男,副教授,研究方向为铁路移动通信,E-mail:yunbogao@mail.lzjtu.cn

  • 中图分类号: TN929.5

Power Allocation Algorithm in T2T and T2G Hybrid Network

  • 摘要:

    现有功率分配算法大多基于理想信道状态信息(CSI)实现性能优化,在列车对列车(T2T)双移动端通信场景中并不适用. 针对城市轨道交通系统T2T和车地(T2G)混合网络场景,引入CSI反馈延时,研究非理想状态时仍可保障通信质量的功率分配算法. 考虑单蜂窝用户复用单T2T用户对情况,以T2G用户传输速率总和最大化为优化目标,构建多约束条件下的功率分配模型. 首先,根据分步思想将非凸模型简化为最优分配功率计算和最佳复用用户匹配2个子模型;其次,利用线性规划分析可行域内目标函数的最优解及最优值,并通过二分法求解最优分配功率;最后,筛选出可行复用对集合后,利用匈牙利算法进行二分图匹配. 仿真结果表明:该算法兼顾城市轨道交通系统中T2T通信中断概率约束和T2G用户传输速率,且可实现1.0 ms内的CSI反馈延时.

     

  • 图 1  T2T通信系统模型

    Figure 1.  Model of T2T communication system

    图 2  城市轨道交通系统T2T和T2G混合网络模型

    Figure 2.  T2T and T2G hybrid network model for urban rail transit system

    图 3  可行域示意

    Figure 3.  Schematic diagrams of the feasible domain

    图 4  可行域的三维曲面

    Figure 4.  3D surface of feasible region

    图 5  T2G用户总信道容量对比

    Figure 5.  Comparison of channel capacity for T2G users

    图 6  不同反馈延时下T2T用户信干噪比的累积分布函数

    Figure 6.  CDF of SINR for T2T users in different feedback delays

    图 7  不同中断概率下T2T用户信干噪比的累积分布函数

    Figure 7.  CDF of SINR for T2T users under different outage probabilities

    表  1  仿真参数设置

    Table  1.   Simulation parameter setting

    仿真参数数值
    Bf/MHz10
    fc/GHz2
    GB/dBi8
    GT/dBi3
    Pc,max/dBm23
    Pt,max/dBm23
    ε10−6
    $ {\gamma _0} $/dB5
    r0/(bps·Hz−1)0.5
    N0/dBm−114
    $ {\xi _{{\text{T2T}}}} $/dB3
    $ {\xi _{{\text{T2G}}}} $/dB8
    下载: 导出CSV
  • [1] GAO Y B, TIAN Z Y, LI M Q, et al. Channel characteristics analysis of train-to-train wireless communication[J]. Journal of Measurement Science and Instrumentation, 2021, 12(3): 331-339.
    [2] STRANG T, MEYEIZU H M, GU X. A railway collision avoidance systems exploiting ad-hoc inter-vehicle communications and galileo[C]//13th World Congress on Intelligent Transportation Systems. London: IEEE, 2006: 45-47.
    [3] CRISTINA R G, ANDREAS L, THOMAS S, et al. Channel model for train communication using the 400 MHz band[C]//IEEE Vehicular Technology Conference. Singapore: IEEE, 2008: 3082-3086
    [4] AI B, CHENG X, KURNER T, et al. Challenges towards wireless communications for high speed railway[J]. IEEE Communications Magazine, 2015, 53(10): 62-68. doi: 10.1109/MCOM.2015.7295465
    [5] YANG X Z. A multilevel soft frequency reuse technique for wireless communication systems[J]. IEEE Communications Letters, 2014, 18(11): 1983-1986. doi: 10.1109/LCOMM.2014.2361533
    [6] 李翠然,杜欣怡,谢健骊. 高铁环境下基于QoS用户业务的公平性功率分配算法[J]. 铁道学报,2020,42(5): 99-104. doi: 10.3969/j.issn.1001-8360.2020.05.013

    LI Cuiran, DU Xinyi, XIE Jianli. Power control algorithm based on fairness and QoS in high-speed railway scenarios[J]. Journal of the China Railway Society, 2020, 42(5): 99-104. doi: 10.3969/j.issn.1001-8360.2020.05.013
    [7] 同钊,李兵兵,惠永涛. 蜂窝与D2D混合网络中的无线资源分配[J]. 北京理工大学学报,2017,37(4): 396-400,429. doi: 10.15918/j.tbit1001-0645.2017.04.013

    TONG Zhao, LI Bingbing, HUI Yongtao. Radio resource allocation for cellular and device-to-device communication hybrid networks[J]. Transactions of Beijing Institute of Technology, 2017, 37(4): 396-400,429. doi: 10.15918/j.tbit1001-0645.2017.04.013
    [8] LI X Q, HE C L, FENG D Q, et al. Power allocation criteria for distributed antenna systems with D2D communication[J]. AEU-International Journal of Electronics and Communications, 2018, 93: 109-115. doi: 10.1016/j.aeue.2018.05.036
    [9] 田春生,钱志鸿,阎双叶,等. D2D通信中联合链路共享与功率分配算法研究[J]. 电子学报,2019,47(4): 769-774. doi: 10.3969/j.issn.0372-2112.2019.04.001

    TIAN Chunsheng, QIAN Zhihong, YAN Shuangye, et al. Research on joint link sharing and power allocation algorithm for device-to-device communications[J]. Acta Electronica Sinica, 2019, 47(4): 769-774. doi: 10.3969/j.issn.0372-2112.2019.04.001
    [10] 范康康,董颖,钱志鸿,等. D2D通信的干扰控制和资源分配算法研究[J]. 通信学报,2018,39(11): 198-206. doi: 10.11959/j.issn.1000-436x.2018240

    FAN Kangkang, DONG Ying, QIAN Zhihong, et al. Research on the interference control and resource allocation in D2D communication[J]. Journal on Communications, 2018, 39(11): 198-206. doi: 10.11959/j.issn.1000-436x.2018240
    [11] LIANG L, GEOFFREY Y L, XU W. Meeting different QoS requirements of vehicular networks: a D2D-based approach[C]//2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans: IEEE, 2017: 3734-3738.
    [12] LIANG L, XIE S J, GEOFFREY Y L, et al. Graph-based radio resourse management for vehicular networks[C]//2018 IEEE International Conference on Commumications. Kansas City: IEEE, 2018: 1-6.
    [13] LIANG L, LI G Y, XU W. Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186-3197. doi: 10.1109/TCOMM.2017.2699194
    [14] 滕昌敏. 端到端通信在列控系统中应用的研究[D]. 北京: 北京交通大学, 2017.
    [15] 陈垚,赵军辉,张青苗,等. 车车通信中通信模式选择与资源分配算法[J]. 计算机工程与应用,2022,58(10): 93-100. doi: 10.3778/j.issn.1002-8331.2012-0104

    CHEN Yao, ZHAO Junhui, ZHANG Qingmiao, et al. Communication mode selection and resource allocation algorithm in vehicle-to-vehicle communication[J]. Computer Engineering and Applications, 2022, 58(10): 93-100. doi: 10.3778/j.issn.1002-8331.2012-0104
    [16] KIM T, LOVE D J, CLERCKX B. Does frequent low resolution feedback outperform infrequent high resolution feedback for multiple antenna beamforming systems?[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1654-1669. doi: 10.1109/TSP.2010.2099222
    [17] HUSSAIN F, HASSAN M Y, HOSSEN M S, et al. System capacity maximization with efficient resource allocation algorithms in D2D communication[J]. IEEE Access, 2018, 6: 32409-32424.
    [18] LIANG L, KIM J, JHA S C, et al. Spectrum and power allocation for vehicular communications with delayed CSI feedback[J]. IEEE Wireless Communications Letters, 2017, 6(4): 458-461. doi: 10.1109/LWC.2017.2702747
    [19] 张友鹏. 可靠性理论与工程技术应用[M]. 兰州: 兰州大学出版社, 2004.
    [20] 褚衍东, 常迎香, 张建刚. 数值计算方法[M]. 北京: 科学出版社, 2016.
    [21] 徐桂贤,马卫国,任余维. 比例公平保证的MIMO-OFDM系统能效资源分配[J]. 北京邮电大学学报,2015,38(4): 68-73. doi: 10.13190/j.jbupt.2015.04.015

    XU Guixian, MA Weiguo, REN Yuwei. Proportional fairness-guaranteed energy-efficient resource allocation for MIMO-OFDM systems[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(4): 68-73. doi: 10.13190/j.jbupt.2015.04.015
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  297
  • HTML全文浏览量:  94
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-04-01
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2022-05-23

目录

    /

    返回文章
    返回