• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

电火花加工用磁力驱动器的微定位控制

徐程程 徐方超 孙凤 张晓友 金俊杰 栾博然

徐程程, 徐方超, 孙凤, 张晓友, 金俊杰, 栾博然. 电火花加工用磁力驱动器的微定位控制[J]. 西南交通大学学报, 2022, 57(3): 610-617. doi: 10.3969/j.issn.0258-2724.20210987
引用本文: 徐程程, 徐方超, 孙凤, 张晓友, 金俊杰, 栾博然. 电火花加工用磁力驱动器的微定位控制[J]. 西南交通大学学报, 2022, 57(3): 610-617. doi: 10.3969/j.issn.0258-2724.20210987
XU Chengcheng, XU Fangchao, SUN Feng, ZHANG Xiaoyou, JIN Junjie, LUAN Boran. Micro-positioning Control of Magnetic Actuator for Electrical Discharge Machining[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 610-617. doi: 10.3969/j.issn.0258-2724.20210987
Citation: XU Chengcheng, XU Fangchao, SUN Feng, ZHANG Xiaoyou, JIN Junjie, LUAN Boran. Micro-positioning Control of Magnetic Actuator for Electrical Discharge Machining[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 610-617. doi: 10.3969/j.issn.0258-2724.20210987

电火花加工用磁力驱动器的微定位控制

doi: 10.3969/j.issn.0258-2724.20210987
基金项目: 国家自然科学基金(52005345,52005344);国家重点研发计划(2020YFC2006701);辽宁省教育厅科学技术研究项目(LFGD2020002);辽宁省“兴辽英才”计划(XLYC1905003);中央引导地方科技发展专项资金(2020JH6/10500048)
详细信息
    作者简介:

    徐程程(1993—),男,博士研究生,研究方向为磁悬浮肾脏泵,E-mail:xuchengcheng@smail.sut.edu.cn

    通讯作者:

    徐方超(1979—),男,讲师,研究方向为精密加工技术与装备,E-mail:xufangchao@sut.edu.cn

  • 中图分类号: TG661

Micro-positioning Control of Magnetic Actuator for Electrical Discharge Machining

  • 摘要:

    针对传统电火花加工中极间间隙的及时控制问题,提出一种具有高精度、响应快、宽频带、长行程的单自由度磁力驱动器,采用磁力驱动器作为电火花加工的局部执行机构,并设计了一种模糊PID控制方法在线实时修正PID控制参数,优化磁力驱动器控制系统. 首先, 分析了磁力驱动器装置的动力学模型,获得通入线圈电流与磁力驱动器动子位移之间的变换关系;其次, 根据磁力驱动器装置特点设计了常规PID控制器,并引入模糊控制对微定位控制性能进行优化;最后, 通过对磁力驱动器的微定位仿真和实验验证了控制器的控制效果. 仿真和实验结果表明:该磁力驱动器具有微米级的定位分辨率、大于50 Hz的宽频带和2 mm的定位行程,完全满足电火花加工微调要求.

     

  • 图 1  磁力驱动器结构

    Figure 1.  Structure of magnetic actuator

    图 2  磁力驱动器动子运动原理

    Figure 2.  Movement principle of mover in magnetic actuator

    图 3  磁力驱动器动子受力模型

    Figure 3.  Force model of mover in magnetic actuator

    图 4  磁力驱动器模糊PID控制原理

    Figure 4.  Fuzzy PID control principle for magnetic actuator

    图 5  输入、输出变量的隶属函数

    Figure 5.  Membership functions of input and output variables

    图 6  位移控制仿真曲线

    Figure 6.  Simulation curves of displacement control

    图 7  磁力驱动器位移控制实验平台

    Figure 7.  Experimental platform for displacement control of magnetic actuator

    图 8  磁力驱动器的阶跃响应

    Figure 8.  Step response of magnetic actuator

    图 9  磁力驱动器的定位分辨率

    Figure 9.  Positioning resolution of magnetic actuator

    图 10  磁力驱动器的正弦跟随曲线

    Figure 10.  Sinusoidal following curves of magnetic actuator

    图 11  磁力驱动器的频率响应曲线

    Figure 11.  Frequency response curves of magnetic actuator

    表  1  受力模型实验参数

    Table  1.   Test parameters of force model

    M/kgc/(N•s•m−1k/(×103 N•m−1Ki(/N•A−1Ff/N
    0.2705.4255.660
    下载: 导出CSV

    表  2  ΔKP的模糊控制规则

    Table  2.   Fuzzy-control rules of ΔKP

    输入语言值E
    NBNMNSZOPSPMPB
    CENBPBPBPMZOZOZONS
    NMPBPMPMZOZONSNS
    NSPMPMPSNSNSNSPM
    ZOPMPSPSNSNSNMNM
    PSPMPSPSNSNMNMNB
    PMPSPSZONMNMNBNB
    PBZOZOZONMNBNBNB
    下载: 导出CSV

    表  3  ΔKI的模糊控制规则

    Table  3.   Fuzzy-control rules of ΔKI

    输入语言值E
    NBNMNSZOPSPMPB
    CENBNBNBNMNMNSZOZO
    NMNBNMNMNSNSZOZO
    NSNMNMNSNSZOPSPS
    ZONMNSNSZOPSPSPM
    PSNMNSZOPSPMPMPB
    PMZOZOPSPMPMPBPB
    PBZOZOPSPMPBPBPB
    下载: 导出CSV

    表  4  ΔKD的模糊控制规则表

    Table  4.   Fuzzy-control rules of ΔKD

    输入语言值E
    NBNMNSZOPSPMPB
    CENBPSNSNMNBNBNBPM
    NMZONSNMNBNMNSZO
    NSZONSNMNMNMNSZO
    ZOZONSNSNMNSNSZO
    PSZOZOZOZOZOZOZO
    PMPBPMPMPSPSPMPB
    PBPBPBPMPSPSPMPB
    下载: 导出CSV
  • [1] LI H, DENG Z, HUANG H, et al. Experiments and simulations of the secondary suspension system to improve the dynamic characteristics of HTS maglev[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(6): 1-8.
    [2] 蒋启龙,梁达,阎枫. 数字单周期电流控制在电磁悬浮系统中的应用[J]. 西南交通大学学报,2019,54(1): 1-8, 22.

    JIANG Qilong, LIANG Da, YAN Fang. Application of Digital One-Cycle Control for Current in Electromagnetic Suspension System[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 1-8, 22.
    [3] 张伟煜,朱熀秋,袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报,2015,30(12): 12-20. doi: 10.3969/j.issn.1000-6753.2015.12.002

    ZHANG Weiyu, ZHU Huangqiu, YUAN Ye. Study on key technologies and Applications of magnetic bearings[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20. doi: 10.3969/j.issn.1000-6753.2015.12.002
    [4] 姚京京,郑德智,马康,等. 多轴悬浮式低频振动传感器的理论研究[J]. 北京航空航天大学学报,2018,44(7): 1481-1488.

    YAO Jingjing, ZHENG Dezhi, MA Kang, et al. Theoretical research on muti-axis maglev low-frequency vibration sensor[J]. Journal of Beijing University of Aeronautics and Astronautic, 2018, 44(7): 1481-1488.
    [5] 郜浩楠,徐俊,蒲晓晖,等. 面向新能源汽车的悬架振动能量回收在线控制方法[J]. 西安交通大学学报,2020,54(4): 19-26.

    GAO Haonan, XU Jun, PU Xiaohui, et al. An online control method for energy recovery of suspension vibration of new energy vehicles[J]. Journal of Xi’an Jiaotong University, 2020, 54(4): 19-26.
    [6] ZHU H Y, TEO D, PANG C K. Magnetically levitated parallel actuated dual-stage (Maglev-PAD) system for six-axis precision positioning[J]. Transactions on Mechatronics, 2019, 24(4): 1829-1838. doi: 10.1109/TMECH.2019.2928978
    [7] 李红伟,范友鹏,张云鹏,等. 轴流式人工心脏泵混合磁悬浮系统的耦合特性[J]. 电机与控制学报,2014,18(5): 105-111. doi: 10.3969/j.issn.1007-449X.2014.05.017

    LI Hongwei, FAN Youpeng, ZHANG Yunpeng. Coupling in hybrid magnetic levitation system of axial-flow blood pump[J]. Electric Machines and Control, 2014, 18(5): 105-111. doi: 10.3969/j.issn.1007-449X.2014.05.017
    [8] 佟玲,吴利平,金嘉琦,等. 激光焦点控制磁力驱动的控制特性实验对比分析[J]. 国防科技大学学报,2018,40(3): 120-126. doi: 10.11887/j.cn.201803019

    TONG Ling, WU Lingping, JIN Jiaqi, et al. Experimental comparative analysis of control characteristics of laser focus control magnetic force drive[J]. Journal of National University of Defense Technology, 2018, 40(3): 120-126. doi: 10.11887/j.cn.201803019
    [9] FENG Y, GUO Y F, LING Z B, et al. Micro-holes EDM of superalloy Inconel 718 based on a magnetic suspension spindle system[J]. Journal of Advanced Manufacturing Technology, 2019, 101(5/6/7/8): 2015-2026. doi: 10.1007/s00170-018-3075-6
    [10] FENG Y, GUO Y F, LING Z B, et al. Investigation on machining performance of micro-holes EDM in ZrB2-SiC ceramics using a magnetic suspension spindle system[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(5): 2083-2095.
    [11] ZHANG X Y, TADAHIKO S, AKIRA S. High-speed electrical discharge machining by using a 5-DOF controlled maglev local actuator[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2008, 2(4): 493-503. doi: 10.1299/jamdsm.2.493
    [12] REPINALDO J P, KOROISHI E H, LARA-MOLINA F A, et al. Neuro-fuzzy control applied on a 2DOF structure using electromagnetic actuators[J]. IEEE Latin America Transactions, 2021, 19(1): 75-82. doi: 10.1109/TLA.2021.9423849
    [13] LI X H, WAN S K, YUAN J P, et al. Active suppression of milling chatter with LMI-based robust controller and electromagnetic actuator[J]. Journal of Materials Processing Technology, 2021, 297: 117238. doi: 10.1016/j.jmatprotec.2021.117238
    [14] ZHENG T, XU X Z, LU X, et al. Learning adaptive sliding mode control for repetitive motion tasks in maglev rotary table[J]. Transactions on Industrial Electronics, 2021, 69(2): 1836-1846.
    [15] 朱熀秋, 顾志伟. 基于模糊神经网络逆系统的五自由度无轴承永磁同步电机自抗扰控制[J]. 电机与控制学报,2021,25(2): 72-81.

    ZHU Huangqiu, GU Zhiwei. Active disturbance rejection control for 5-degree-of-freedom bearingless permanent magnet synchronous motor based on inverse system using the fuzzy neural network[J]. Electric Machines and Control, 2021, 25(2): 72-81.
    [16] CHEN J W. Modeling and decoupling control of a linear permanent magnet actuator considering fringing effect for precision engineering[J]. IEEE Transactions on Magnetics, 2021, 57(3): 1965-2012.
    [17] 林超力,刘鸿飞,孙惠军,等. 模糊自适应PID算法在核磁共振谱仪样品旋转控制系统中的应用[J]. 分析化学,2011,39(4): 506-510.

    LIN Chaoli, LIU Hongfei, SUN Huijun, et al. Implementation of fuzzy self-tuning proportional integral derivative controller on sample-tube spin control system in nuclear magnetic resonance spectrometer[J]. Chinese Journal of Analytical Chemistry, 2011, 39(4): 506-510.
    [18] ZHANG X Y, UEYAMA Y, SHINSHI T, ec al. High-speed and high-accuracy EDM of micro holes by using a 5-DOF controlled maglev local actuator[J]. Materials Science Forum, 2009, 2(4): 255-260.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  69
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-03-22
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回