• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

磁力涡旋压缩机永磁随变机构的力学特性

史策 徐方超 孙凤 金俊杰 佟玲 周庆 张晓友

史策, 徐方超, 孙凤, 金俊杰, 佟玲, 周庆, 张晓友. 磁力涡旋压缩机永磁随变机构的力学特性[J]. 西南交通大学学报, 2022, 57(3): 597-603. doi: 10.3969/j.issn.0258-2724.20210986
引用本文: 史策, 徐方超, 孙凤, 金俊杰, 佟玲, 周庆, 张晓友. 磁力涡旋压缩机永磁随变机构的力学特性[J]. 西南交通大学学报, 2022, 57(3): 597-603. doi: 10.3969/j.issn.0258-2724.20210986
SHI Ce, XU Fangchao, SUN Feng, JIN Junjie, Tong Ling, ZHOU Qing, ZHANG Xiaoyou. Mechanical Properties of Scroll Compressor with Permanent Magnetic Compliance Mechanism[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 597-603. doi: 10.3969/j.issn.0258-2724.20210986
Citation: SHI Ce, XU Fangchao, SUN Feng, JIN Junjie, Tong Ling, ZHOU Qing, ZHANG Xiaoyou. Mechanical Properties of Scroll Compressor with Permanent Magnetic Compliance Mechanism[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 597-603. doi: 10.3969/j.issn.0258-2724.20210986

磁力涡旋压缩机永磁随变机构的力学特性

doi: 10.3969/j.issn.0258-2724.20210986
基金项目: 国家自然科学基金(52005345, 52005344);国家重点研发计划(2020YFC2006701);辽宁省教育厅科学技术研究项目(LFGD2020002);辽宁省 “兴辽英才计划”(XLYC1905003);中央引导地方科技发展专项资金(2020JH6/10500048)
详细信息
    作者简介:

    史策(1993—),男,博士研究生,研究方向为磁力涡旋压缩机的控制和动力学研究,E-mail:a1905115197@163.com

    通讯作者:

    徐方超(1979—),男,副教授,研究方向为机械系统多元驱动及其控制技术,E-mail:xufangchao@sut.edu.cn

  • 中图分类号: TH455

Mechanical Properties of Scroll Compressor with Permanent Magnetic Compliance Mechanism

  • 摘要:

    为减少涡旋压缩机运行时的机械接触,针对无油涡旋压缩机的结构特点提出一种永磁随变机构,并分析其力学特性. 首先,分析永磁随变机构的工作原理,采用虚位移法建立磁力模型,运用理论公式、有限元仿真和实验分析永磁随变机构工作气隙处的磁感应强度;其次,通过理论公式和有限元仿真,分析永磁随变机构结构参数与力学特性的关系;最后,通过磁力涡旋压缩机的性能参数和磁力测试实验对永磁随变机构的力学性能进行验证. 结果表明:永磁随变机构的径向磁力在一定范围内随着径向位移的增加而增加,随着轴向位移的增大而减小;在永磁随变机构工作中,径向位移与永磁随变机构刚度系数近似呈线性关系;在工作距离内永磁随变机构单组磁环的最小轴向磁力为8.73 N,在工作轨迹上的径向力为4.8 N,满足磁力涡旋压缩机的工作需求.

     

  • 图 1  涡旋压缩机结构

    Figure 1.  Scroll compressor structure

    图 2  永磁随变机构轴向偏移示意

    Figure 2.  Axial offset of permanent magnet variable mechanism

    图 3  永磁随变机构工作原理

    Figure 3.  Working principle of permanent magnetic compliance mechanism

    图 4  磁环的径向磁感应强度

    Figure 4.  Radial magnetic induction intensity of magnetic ring

    图 5  径向磁感应强度分布

    Figure 5.  Radial magnetic induction intensity distribution

    图 6  永磁随变机构的结构参数

    Figure 6.  Structural parameters of permanent magnetic compliance mechanism

    图 7  径向磁力和轴向磁力与磁环内径的关系

    Figure 7.  Relationship between radial magnetic force, axialmagnetic force and inner diameter of magnetic ring

    图 8  径向磁力和轴向磁力与磁环高度的关系

    Figure 8.  Relationship between radial magnetic force, axial magnetic force and height of magnetic ring

    图 9  径向磁力和轴向磁力与轴向位移的关系

    Figure 9.  Relationship between radial magnetic force, axialmagnetic force and axial displacement

    图 10  气体压力与旋转角的关系

    Figure 10.  Relationship between gas pressure and rotation angle

    图 11  轴向磁力与径向位移关系

    Figure 11.  Relationship between axial magnetic force and radial displacement

    图 12  径向磁力与径向位移关系

    Figure 12.  Relationship between radial magnetic force and radial displacement

    表  1  压缩机型线参数

    Table  1.   Parameters of scroll compressor profile

    参数取值
    节距/mm8
    齿高/mm10
    齿厚/mm3
    圈数/2
    旋转半径/mm1
    基圆半径/mm1.27
    吸气角/(°)0
    θ/(°)293
    压缩比3
    泄露系数1.2
    排气量/mm31508
    下载: 导出CSV
  • [1] 李超,赵荣珍,刘振全. 涡旋压缩机径向随变机构动力学模型研究[J]. 压缩机技术,2004(3): 7-8,22. doi: 10.3969/j.issn.1006-2971.2004.03.003

    LI Chao, ZHAO Rongzhen, LIU Zhenquan. Study of kinetics model of scroll compressor with radial compliance mechanism[J]. Compressor Technology, 2004(3): 7-8,22. doi: 10.3969/j.issn.1006-2971.2004.03.003
    [2] 刘兴旺,王华,刘振全,等. 一种变频涡旋压缩机的径向密封机构[J]. 压缩机技术,2007(4): 1-3. doi: 10.3969/j.issn.1006-2971.2007.04.001

    LIU Xingwang, WANG Hua, LIU Zhenquan, et al. A radial sealing mechanism of inverter scroll compressor[J]. Compressor Technology, 2007(4): 1-3. doi: 10.3969/j.issn.1006-2971.2007.04.001
    [3] 赵嫚,李超,俞树荣,等. 径向随变机构对涡旋压缩机转子系平衡影响分析[J]. 化工机械,2012,39(6): 732-735. doi: 10.3969/j.issn.0254-6094.2012.06.012

    ZHAO Man, LI Chao, YU Shurong, et al. Radial compliance mechanism effect on rotor balancing system for scroll compressor[J]. Chemical Engineering & Machinery, 2012, 39(6): 732-735. doi: 10.3969/j.issn.0254-6094.2012.06.012
    [4] 陶文. 涡旋机械涡旋槽式轴向随变机构的动态特性研究[D]. 兰州: 兰州理工大学, 2013.
    [5] FORNI R J. Scroll pump having axially compliant spring element: US9360013[P]. 2016-06-07.
    [6] TANG Y, HUNG C, CHANG Y. Performance improvements in low side scroll compressor with extended operation speeds[J]. Applied Thermal Engineering, 2011, 31(16): 3542-3551. doi: 10.1016/j.applthermaleng.2011.07.009
    [7] JU J T, WANG J A, WANG Y F, et al. Suspension force analysis of six-pole radial-axial magnetic bearing for energy storage flywheel[J]. International Journal of Modern Physics B, 2020, 34(1/2/3): 2040066.1-2040066.7.
    [8] ZHANG X, LIU X, HAN B C, et al. Magnetic circuit designing and structural optimisation for a three degree-of-freedom hybrid magnetic bearing[J]. IET Electric Power Applications, 2018, 12(8): 1082-1089. doi: 10.1049/iet-epa.2017.0792
    [9] 黎松奇,张昆仑. 单磁铁悬浮系统自激振动的稳定性分析及抑制[J]. 西南交通大学学报,2015,50(3): 410-416. doi: 10.3969/j.issn.0258-2724.2015.03.004

    LI Songqi, ZHANG Kunlun. Self-excited vibration of single-magnet suspension system: stability analysis and inhibition[J]. Journal of Southwest Jiaotong University, 2015, 50(3): 410-416. doi: 10.3969/j.issn.0258-2724.2015.03.004
    [10] ZHU H Q, WANG S S. Decoupling control based on linear/non-linear active disturbance rejection switching for three-degree-of-freedom six-pole active magnetic bearing[J]. IET Electric Power Applications, 2020, 14(10): 1818-1827. doi: 10.1049/iet-epa.2019.0448
    [11] SHEH ZAD H, KHAN T I, LAZOGLU I. Design and adaptive sliding-mode control of hybrid magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2537-2547. doi: 10.1109/TIE.2017.2739682
    [12] KANDIL A. Investigation of the whirling motion and rub/impact occurrence in a 16-pole rotor active magnetic bearings system with constant stiffness[J]. Nonlinear Dynamics, 2020, 102(4): 2247-2265. doi: 10.1007/s11071-020-06071-x
    [13] 孙凤,张明,孙兴伟,等. 3自由度等刚度永磁弹簧的尺寸参数特性研究[J]. 机械设计与制造,2018(9): 41-44. doi: 10.3969/j.issn.1001-3997.2018.09.011

    SUN Feng, ZHANG Ming, SUN Xingwei, et al. Study on dimensional parameters’ characteristics of 3 DOF same-stiffness permanent magnetic spring[J]. Machinery Design & Manufacture, 2018(9): 41-44. doi: 10.3969/j.issn.1001-3997.2018.09.011
    [14] 孙凤,张明,孙兴伟,等. 三自由度等刚度永磁弹簧的力学特性研究[J]. 中国机械工程,2015,26(8): 1005-1009. doi: 10.3969/j.issn.1004-132X.2015.08.003

    SUN Feng, ZHANG Ming, SUN Xingwei, et al. Study on mechanics characteristics of 3-DOF same-stiffness permanent magnetic spring[J]. China Mechanical Engineering, 2015, 26(8): 1005-1009. doi: 10.3969/j.issn.1004-132X.2015.08.003
    [15] KIM K B, IM S H, UM D Y, et al. Comparison of magnetic levitation systems using ring-shaped permanent magnets[J]. IEEE Transactions on Magnetics, 2019, 55(7): 1-4.
    [16] 刘强,赵明师,韩邦成,等. 永磁偏置径向磁轴承能量优化与实验[J]. 光学 精密工程,2019,27(11): 2420-2428. doi: 10.3788/OPE.20192711.2420

    LIU Qiang, ZHAO Mingshi, HAN Bangcheng, et al. Energy optimization and experimental for a permanent magnet-biased redial magnetic bearing[J]. Optics and Precision Engineering, 2019, 27(11): 2420-2428. doi: 10.3788/OPE.20192711.2420
    [17] 孙凤,唐敬虎,李强,等. 可变磁路式永磁悬浮系统刚度特性分析及变刚度控制[J]. 振动与冲击,2020,39(7): 132-139.

    SUN Feng, TANG Jinghu, LI Qiang, et al. Stiffness characteristics analysis and variable stiffness control for a permanent magnetic levitation system with variable magnetic circuit[J]. Journal of Vibration and Shock, 2020, 39(7): 132-139.
    [18] XU F Q, LU X, ZHENG T, et al. Motion control of a magnetic levitation actuator based on a wrench model considering yaw angle[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8545-8554. doi: 10.1109/TIE.2019.2949519
    [19] ZHANG X D, TRAKARNCHAIYO C, ZHANG H, et al. MagTable:a tabletop system for 6-DOF large range and completely contactless operation using magnetic levitation[J]. Mechatronics, 2021, 77: 102600.1-102600.10. doi: 10.1016/j.mechatronics.2021.102600
    [20] 刘振全. 涡旋式流体机械与涡旋压缩机[M]. 北京: 机械工业出版社, 2009.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  99
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28
  • 修回日期:  2022-03-28
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回