• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于背门约束系统的车内低频轰鸣声控制

张杰 庞剑 张思文 万玉平 贾文宇 雷洋 付江华

王蔚, 彭其渊, 王奇, 肖新标. 重载列车车钩力对列车偏载安全性影响[J]. 西南交通大学学报, 2021, 56(2): 378-384. doi: 10.3969/j.issn.0258-2724.20200053
引用本文: 张杰, 庞剑, 张思文, 万玉平, 贾文宇, 雷洋, 付江华. 基于背门约束系统的车内低频轰鸣声控制[J]. 西南交通大学学报, 2023, 58(2): 280-286. doi: 10.3969/j.issn.0258-2724.20210979
WANG Wei, PENG Qiyuan, WANG Qi, XIAO Xinbiao. Effect Analysis of Coupler Force onHeavy-Haul Train Safety Under Eccentric Loads[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 378-384. doi: 10.3969/j.issn.0258-2724.20200053
Citation: ZHANG Jie, PANG Jian, ZHANG Siwen, WAN Yuping, JIA Wenyu, LEI Yang, FU Jianghua. Control of interior Low Frequency Booming Based on Vehicle Liftgate Constraints[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 280-286. doi: 10.3969/j.issn.0258-2724.20210979

基于背门约束系统的车内低频轰鸣声控制

doi: 10.3969/j.issn.0258-2724.20210979
详细信息
    作者简介:

    张杰(1986—),男,高级工程师,研究方向为整车NVH技术,E-mail:zj_lanzhou@126.com

    通讯作者:

    庞剑(1963—),男,研究员级高级工程师,博士,研究方向为整车NVH技术,E-mail:pangjian@changan.com.cn

  • 中图分类号: U467.493

Control of interior Low Frequency Booming Based on Vehicle Liftgate Constraints

  • 摘要:

    汽车背门一般通过铰链、锁销、缓冲块等约束系统安装和固定在车身上,其刚体模态振动与车内声腔声压耦合,是导致低频轰鸣声的主要原因. 本文建立了背门振动-乘员舱声压的一维板-腔耦合声学解析模型,分析研究了边界约束刚度对板件振动速度响应及腔内耦合声压的影响规律,并进行了实车实验验证;通过调节锁销相对位移和缓冲块相对高度,解决了某车型低频敲鼓声问题. 分析结果表明:在板件刚体模态振动下,腔内耦合声压幅值沿远离板件方向逐渐增大,且在声腔底部位置最大;板件振动速度相应及腔内耦合声压峰值幅值随边界约束系统刚度减小而降低;在低频轰鸣发生的20~30 Hz频率范围内,乘员舱前排位置声压峰值幅值比中排及后排位置大约8 dB(A),验证了理论分析结果的正确性;乘员舱内耦合声压峰值幅值随着锁销相对位置的增大和缓冲块相对高度的减小而降低,锁销相对车身向车尾方向增大2 mm或者缓冲块相对高度减小2 mm,可以使背门振动速度减小约0.002~0.003 m/s,前排声压峰值幅值降低3.5~14.8 dB(A).

     

  • 图 1  背门-乘员舱声腔简化一维耦合模型

    Figure 1.  Simplified model of one-dimension structure-acoustic coupled system between liftgate and passenger acoustic cavity

    图 2  腔内声压分布

    Figure 2.  Sound pressure of coupled system

    图 3  背门系统单自由度简化模型

    Figure 3.  Single degree of freedom (SDOF) model of liftgate system

    图 4  单自由度系统振动速度响应

    Figure 4.  Velocity responses of SDOF model varying with stiffness

    图 5  2档30 km/h车内噪声测试水平

    Figure 5.  Tested interior sound pressure level at vehicle speed of 30 km/h

    图 6  背门刚体模态

    Figure 6.  Rigid mode of liftgate

    图 7  背门约束系统刚度影响因素

    Figure 7.  Influence factors on stiffness of liftgate constraints

    图 8  背门锁对背门约束系统刚度影响

    Figure 8.  Influence of lockpin location on stiffness of liftgate constraints

    图 9  背门速度响应随锁销相对位置变化

    Figure 9.  Vibration velocity response of liftgate varying with lockpin location

    图 10  车内噪声水平随锁销相对位置变化

    Figure 10.  Tested interior sound pressure level varying with lockpin location

    图 11  缓冲块对背门约束系统刚度影响

    Figure 11.  Influence of buffer height on stiffness of liftgate constraints

    图 12  背门速度响应随缓冲块相对高度变化

    Figure 12.  Vibration velocity response of liftgate varying with ralative height of buffer

    图 13  车内噪声水平随缓冲块相对高度变化

    Figure 13.  Tested interior sound pressure level varying with ralative height of buffer

    图 14  2档30 km/h车内噪声测试水平

    Figure 14.  Tested interior sound pressure level at vehicle speed of 30 km/h

    表  1  模型计算参数

    Table  1.   Properties of the calculated model

    物理量
    M/kg25
    K/(N·m−1600000
    C/(N·s·m−110
    ρ/(kg·m−11.21
    c0/(m·s−1340
    L/m2
    下载: 导出CSV
  • [1] QATU M S, ABDELHAMID M K, PANG J, et al. Overview of automotive noise and vibration[J]. International Journal of Vehicle Noise and Vibration, 2009, 5(1/2): 1-34. doi: 10.1504/IJVNV.2009.029187
    [2] 庞剑, 谌刚, 何华. 汽车噪声与振动: 理论与应用[M]. 北京: 北京理工大学出版社, 2006: 93-94. .
    [3] PANG J. Noise and vibration control in automotive bodies[M]. Chichester: John Wiley & Sons Ltd., 2018: 105-106.
    [4] PANG J, ZHANG J, ZHANG J, et al. A simplified model for vehicle body panel vibration and sound radiation and interior booming control[C]//21st International Congress on Sound and Vibration 2014. Beijing: International Institute of Acoustics and Vibrations, 2014: 920-927.
    [5] ZHANG J, PANG J, ZHANG J, et al. Experimental and simulation analysis of interior booming induced by vehicle body panel vibration[C]//23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics. Athens: International Institute of Acoustics and Vibrations, 2019, 28-39.
    [6] ZHANG J, PANG J, WAN Y P, et al. Research and application of reinforcement beams supporting body panel on attenuation of low frequency vibration and sound radiation[C]//Proceedings of China SAE Congress 2019: Selected Papers. Singapore: [s.n.], 2021, 646: 861-871.
    [7] WAN Y P, PANG J, ZHANG J, et al. Research and application of lumped mass damper on the control of vehicle body panel low frequency vibration and sound radiation[J]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2019, 259(8): 1390-1398.
    [8] 宋福强,罗培智. SUV后背门振动对车内噪声影响的研究[J]. 汽车技术,2017(6): 35-39. doi: 10.3969/j.issn.1000-3703.2017.06.007

    SONG Fuqiang, LUO Peizhi. Research on the influence of liftgate vibration of SUV on interior noise[J]. Automobile Technology, 2017(6): 35-39. doi: 10.3969/j.issn.1000-3703.2017.06.007
    [9] OSAWA T, IWAMA A. A study of the vehicle acoustic control for booming noise utilizing the vibration characteristics of trunk lid[C]//SAE Technical Paper Series. Warrendale: SAE International, 1986, 861410.1-861410.12.
    [10] SUNG S, CHAO S, LINGALA H, et al. Structural-acoustic analysis of vehicle body panel participation to interior acoustic boom noise[C]//SAE Technical Paper Series.Warrendale: SAE International, 2011: 0496.1-0496.7.
    [11] GUPTA G, GAUTAM R, JAIN C P. Study of coupling behavior of acoustic cavity modes to improve booming noise in passenger vehicles[C]//SAE Technical Paper Series. Warrendale: SAE International, 2014: 1974.1-1974.8.
    [12] DOWELL E H, GORMAN G F Ⅲ, SMITH D A. Acoustoelasticity: General theory, acoustic natural modes and forced response to sinusoidal excitation, including comparisons with experiment[J]. Journal of Sound and Vibration, 1977, 52(4): 519-542. doi: 10.1016/0022-460X(77)90368-6
    [13] KIM S M, BRENNAN M J. A compact matrix formulation using the impedance and mobility approach for the analysis of structural-acoustic systems[J]. Journal of Sound and Vibration, 1999, 223(1): 97-113. doi: 10.1006/jsvi.1998.2096
    [14] ZHANG J, PANG J, WAN Y P, et al. Analysis of structure−acoustic coupling characteristics between adjacent flexible panels and enclosed cavity[J]. Journal of Vibration and Acoustics, 2021, 143(2): 021006.1-021006.9.
  • 期刊类型引用(7)

    1. 闫楠,孙淦,白晓宇,王忠胜,刘一鸿,贾世祥,张亚妹,崔岚. 嵌岩抗浮锚杆承载性能现场试验与机理分析. 中南大学学报(自然科学版). 2025(02): 730-743 . 百度学术
    2. 胡建林,薛金昊,郭江峰,孟志鹏,刘洋,郑瑞海. 不同围压下锚杆–土体界面剪切特性影响因素的试验研究. 工业建筑. 2024(03): 200-205 . 百度学术
    3. 白晓宇,吴泽坤,王凤姣,孙淦,张明义,闫楠. BFRP抗浮锚杆抗拔性能现场试验与荷载传递特性. 岩石力学与工程学报. 2024(06): 1335-1346 . 百度学术
    4. 陈向琳,王超圣,许战波,孙晓刚. 砾石地层中自钻式锚杆锚固特性现场试验与数值仿真. 科学技术与工程. 2024(20): 8655-8662 . 百度学术
    5. 胡玉超. 冻融环境下树脂混凝土与玻璃纤维锚杆粘结性能的试验研究. 水利技术监督. 2023(05): 231-233 . 百度学术
    6. 白晓宇,苏悦,闫楠,杲晓东,于风波,李伟奇,赵文强,宋波,苑振. 抗浮锚杆受力特性试验研究进展. 科学技术与工程. 2023(15): 6290-6302 . 百度学术
    7. 韩有强. 体育护具用玄武岩纤维复合材料的制备与性能分析. 塑料助剂. 2022(02): 38-40 . 百度学术

    其他类型引用(7)

  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  451
  • HTML全文浏览量:  139
  • PDF下载量:  51
  • 被引次数: 14
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-03-29
  • 网络出版日期:  2023-01-13
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回