• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

可变磁路式永磁悬浮平台的起浮控制方法

孙凤 裴文哲 金俊杰 赵川 徐方超 张明

孙凤, 裴文哲, 金俊杰, 赵川, 徐方超, 张明. 可变磁路式永磁悬浮平台的起浮控制方法[J]. 西南交通大学学报, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964
引用本文: 孙凤, 裴文哲, 金俊杰, 赵川, 徐方超, 张明. 可变磁路式永磁悬浮平台的起浮控制方法[J]. 西南交通大学学报, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964
SUN Feng, PEI Wenzhe, JIN Junjie, ZHAO Chuan, XU Fangchao, ZHANG Ming. Floating Control Method for Permanent Magnetic Levitation Platform with Variable Flux Path[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964
Citation: SUN Feng, PEI Wenzhe, JIN Junjie, ZHAO Chuan, XU Fangchao, ZHANG Ming. Floating Control Method for Permanent Magnetic Levitation Platform with Variable Flux Path[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 531-539. doi: 10.3969/j.issn.0258-2724.20210964

可变磁路式永磁悬浮平台的起浮控制方法

doi: 10.3969/j.issn.0258-2724.20210964
基金项目: 国家自然科学基金(52005345,52005344);国家重点研发计划(2020YFC2006701);辽宁省教育厅科学技术研究项目(LFGD2020002);辽宁省“兴辽英才计划”(XLYC1802077,XLYC1905003);辽宁省重点实验室建设项目(2020JH6/10500048)
详细信息
    作者简介:

    孙凤(1978—),男,教授,博士,研究方向为机械系统多元驱动及其控制技术,E-mail:sunfeng@sut.edu.cn

  • 中图分类号: TP271.4

Floating Control Method for Permanent Magnetic Levitation Platform with Variable Flux Path

  • 摘要:

    磁悬浮技术应用于超洁净传送,可有效减少粉尘污染. 可变磁路式永磁悬浮平台具有低功耗、抗吸附的特性,可避免电磁悬浮传送平台温升大和混合磁悬浮平台安全性差的弊端. 为解决永磁悬浮平台起浮过程易发散的问题,提出并验证分散控制、集中控制和积分分离法3种起浮控制方法. 首先,分析可变磁路式永磁悬浮平台的磁力控制原理,建立系统动力学模型,并采用分散控制实现悬浮平台起浮;然后,针对起浮后平台倾斜的问题,提出了三自由度集中控制方法,其中平台的垂向控制为PD (proportional differential),侧倾与俯仰方向为PID(proportional integral differential );最后,应用积分分离法进行分段控制,以实现垂向的精确定位. 研究结果表明:集中控制方法实现了平台倾斜角的自纠偏,可有效解决分散控制下各磁极磁力特性差异引起的平台倾斜问题,调节时间为0.5 s;垂向采用积分分离方法后,平台垂向的稳态误差由0.23 mm可减小为0,调节时间为3.0 s.

     

  • 图 1  可变磁路原理

    Figure 1.  Mechanism of variable flux path

    图 2  磁力测量结果

    Figure 2.  Measurement results of magnetic force

    图 3  悬浮平台基本结构

    Figure 3.  Basic structure of levitaion platform

    图 4  坐标变换关系原理

    Figure 4.  Principle of coordinate transformation

    图 5  悬浮平台的力与位移

    Figure 5.  Force and displacement on levitation platform

    图 6  分散控制策略

    Figure 6.  Decentralized control strategy

    图 7  永磁悬浮平台的原理样机

    Figure 7.  Prototype of permanent magnetic levitation platform

    图 8  原理样机的电气控制系统

    Figure 8.  Electrical system in prototype

    图 9  分散控制起浮实验结果

    Figure 9.  Results of floating experiments with decentralized control

    图 10  分散控制起浮的平台姿态

    Figure 10.  Floating platform attitude by decentralized control

    图 11  集中控制策略

    Figure 11.  Centralized control strategy

    图 12  集中控制起浮实验结果

    Figure 12.  Results of floating experimentsl by centralized control

    图 13  集中控制起浮的平台姿态

    Figure 13.  Floating platform attitude of centralized control

    图 14  积分分离控制起浮实验结果

    Figure 14.  Results of floating experiments with integral separation method

    图 15  积分分离起浮的平台姿态

    Figure 15.  Floating platform attitude of integral separation method

  • [1] 邓自刚,张勇,王博,等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报,2019,54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Zigang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
    [2] 徐园平,周瑾,金超武,等. 抗磁悬浮研究综述[J]. 机械工程学报,2019,55(2): 214-222.

    XU Yuanping, ZHOU Jin, JIN Chaowu, et al. Diamagnetic levitation: a review[J]. Journal of Mechanical Engineering, 2019, 55(2): 214-222.
    [3] 巩磊,杨智,祝长生. 主动电磁轴承-刚性转子系统加速响应的鲁棒性[J]. 电工技术学报,2021,36(2): 268-281.

    GONG Lei, YANG Zhi, ZHU Changsheng. Acceleration responses robustness of active magnetic bearings-rigid rotor system[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 268-281.
    [4] 段吉安,郭宁平,周海波. 一种新型磁悬浮直线运动平台的热分析[J]. 中国电机工程学报,2011,31(15): 114-120.

    DUAN Ji’an, GUO Ningping, ZHOU Haibo. Thermal analysis of a novel linear maglev transportation platform[J]. Proceedings of the CSEE, 2011, 31(15): 114-120.
    [5] KIM J, HA C W, KING G B, et al. Experimental development of levitation control for a high-accuracy magnetic levitation transport system[J]. ISA Transactions, 2020, 101: 358-365.
    [6] COEY J M D. Perspective and prospects for rare earth permanent magnets[J]. Engineering, 2020, 6(2): 119-131.
    [7] MORISHITA M, AZUKIZAWA T, KANDA S, et al. A new MAGLEV system for magnetically levitated carrier system[J]. IEEE Transactions on Vehicular Technology, 1989, 38(4): 230-236.
    [8] KIM K J, HAN H S, KIM C H, et al. Dynamic analysis of a maglev conveyor using an EM-PM hybrid magnet[J]. Journal of Electrical Engineering and Technology, 2013, 8(6): 1571-1578.
    [9] OKA K, TOSHIRO H, TAKUYA S. Hanging type MAGLEV system with permanent magnet motion control[J]. IEEJ Transactions on Industry Applications, 1999, 119(3): 291-297.
    [10] 孙凤,韦伟,金嘉琦,等. 永磁悬浮非接触回转驱动系统[J]. 机械工程学报,2017,53(20): 192-201.

    SUN Feng, WEI Wei, JIN Jiaqi, et al. Non-contact rotation driving system using permanent-magnetic suspension[J]. Journal of Mechanical Engineering, 2017, 53(20): 192-201.
    [11] LIN J, OKA K, HARADA A. Zero-power tip-tilt control of a magnetically levitated platform by lateral displacement of hybrid-electromagnets[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 66(1): 63-74.
    [12] ZHAO C, OKA K, SUN F, et al. Design of zero-power control strategy with resisting tilt of hybrid magnetic levitation system[J/OL]. IEEE Transactions on Industrial Electronics, 2021: 3121670.1-3121670.10.[2021-10-22]. https://ieeexplore.ieee.org/document/9592690
    [13] UENO T, HIGUCHI T. Zero-power magnetic levitation using composite of magnetostrictive/piezoelectric materials[J]. IEEE Transactions on Magnetics, 2007, 43(8): 3477-3482.
    [14] ISHIBASHI N, MIZUNO T, ISHINO Y, et al. The proposal of magnetic suspension using laterally control flux-path mechanism[J]. Actuators, 2017, 6(1): 11.
    [15] OKA K, YAMAMOTO K, HARADA A. Magnetic suspension mechanism using rotary permanent magnets[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 64(1/2/3/4): 977-983.
    [16] SUN F, OKA K, JIN J J. A zero suspension force improvement method of a permanent magnetic suspension device[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 41(1): 1-12.
    [17] 李强,唐敬虎,孙凤,等. 可变磁路式永磁悬浮系统的防跌落防吸附控制[J]. 仪器仪表学报,2019,40(3): 246-254.

    LI Q, TANG J H, SUN F, et al. Anti-fall and anti-adsorption control of permanent magnetism levitation system with flux path control[J]. Chinese Journal of Scientific Instrument, 2019, 40(3): 246-254.
    [18] ZHAO C, SUN F, JIN J J, et al. Analysis of quasi-zero power characteristic for a permanent magnetic levitation system with a variable flux path control mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(1): 437-447.
  • 加载中
图(15)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  137
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-02-09
  • 刊出日期:  2022-03-06

目录

    /

    返回文章
    返回