• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

温升作用下CRTS型板宽窄接缝受力及损伤分析

刘笑凯 刘学毅 肖杰灵 董佳佳

刘笑凯, 刘学毅, 肖杰灵, 董佳佳. 温升作用下CRTSⅡ型板宽窄接缝受力及损伤分析[J]. 西南交通大学学报, 2024, 59(2): 273-280. doi: 10.3969/j.issn.0258-2724.20210946
引用本文: 刘笑凯, 刘学毅, 肖杰灵, 董佳佳. 温升作用下CRTS型板宽窄接缝受力及损伤分析[J]. 西南交通大学学报, 2024, 59(2): 273-280. doi: 10.3969/j.issn.0258-2724.20210946
LIU Xiaokai, LIU Xueyi, XIAO Jieling, DONG Jiajia. Analysis of Internal forces and Damage of Broad-Narrow Joint of CRTSⅡ Slab Track Under Temperature Rise[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 273-280. doi: 10.3969/j.issn.0258-2724.20210946
Citation: LIU Xiaokai, LIU Xueyi, XIAO Jieling, DONG Jiajia. Analysis of Internal forces and Damage of Broad-Narrow Joint of CRTS Slab Track Under Temperature Rise[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 273-280. doi: 10.3969/j.issn.0258-2724.20210946

温升作用下CRTS型板宽窄接缝受力及损伤分析

doi: 10.3969/j.issn.0258-2724.20210946
基金项目: 国家自然科学基金(51978584,51778543);山西省基础研究计划(20210302124452)
详细信息
    作者简介:

    刘笑凯(1990—),男, 讲师,博士,研究方向为轨道结构与轨道力学,E-mail:jlallk@163.com

    通讯作者:

    肖杰灵(1978—),男, 副教授,博士,研究方向为高速、重载轨道结构及轨道动力学,E-mail:xjling@swjtu.cn

  • 中图分类号: U213.212

Analysis of Internal forces and Damage of Broad-Narrow Joint of CRTS Slab Track Under Temperature Rise

  • 摘要:

    为研究宽窄接缝在温升作用下的受力和损伤,根据混凝土塑性损伤理论和内聚力理论,建立考虑新旧混凝土界面的宽窄接缝细部的有限元模型;计算不同温升条件下的宽窄接缝应力和损伤因子,并分析宽窄接缝强度和窄接缝宽度的影响. 研究结果表明:窄接缝挤碎是一种渐变受压损伤,宽、窄接缝交界处断裂是一种脆性受拉损伤;与宽、窄接缝交界处断裂相比,窄接缝挤碎对结构受力影响更大;宽窄接缝尺寸不均匀导致宽、窄接缝交界处垂向受拉,这是宽窄接缝产生损伤的主要原因;提高宽窄接缝的混凝土强度可有效降低垂向拉应力和受拉损伤,但对纵向应力和受压损伤影响较小;为改善受力并降低损伤,建议宽窄接缝混凝土与轨道板等强,并且宽窄接缝上下等宽.

     

  • 图 1  平面应力状态下的屈服面

    Figure 1.  Yield surface in plane-stress state

    图 2  内聚力单元应力-位移关系

    Figure 2.  Stress-displacement relationship of cohesive element

    图 3  轨道结构有限元模型

    Figure 3.  Finite element model of track structure

    图 4  宽窄接缝细部有限元模型

    Figure 4.  Detailed finite element model of broad-narrow joint

    图 5  试验试件界面参数

    Figure 5.  Interface parameters of specimens in experiments

    图 6  界面的应力-位移曲线

    Figure 6.  Interfacial stress-displacement curves

    图 7  宽窄接缝的损伤云图

    Figure 7.  Damage contours of broad-narrow joint

    图 8  宽窄接缝的力学状态

    Figure 8.  Mechanical state of broad-narrow joint

    图 9  实际条件下损伤因子的变化

    Figure 9.  Variation of damage parameter in actual situations

    图 10  实际条件下应力的变化

    Figure 10.  Variation of normal stress in actual situations

    图 11  不同强度下宽窄接缝的损伤因子

    Figure 11.  Damage parameters of broad-narrow joint under different strengths

    图 12  不同强度下宽窄接缝的应力

    Figure 12.  Normal stress of broad-narrow joint under different strengths

    图 13  不同窄接缝宽度下宽窄接缝的损伤因子

    Figure 13.  Damage factors of broad-narrow joint under different widths of narrow joints

    图 14  不同窄接缝宽度下宽窄接缝的应力

    Figure 14.  Normal stress of broad-narrow joint under different widths of narrow joints

    表  1  界面参数

    Table  1.   Interface parameters

    编号拉伸刚度/
    (GPa·m−1
    拉伸强度/MPa拉伸断裂能/
    (N·m−1
    剪切刚度/
    (GPa·m−1
    剪切强度/MPa剪切断裂能/
    (N·m−1
    C55−砂浆2.500.52250.51.220.587123.5
    C55−C353.270.70473.71.920.952146.3
    C55−C453.670.95095.62.521.470241.1
    C55−C554.161.548267.52.891.960424.7
    下载: 导出CSV

    表  2  主要计算参数

    Table  2.   Main calculation parameters

    部件弹性模量/GPa泊松比热膨胀系数/℃密度/(kg·m−3宽度/m厚度/m
    轨道板36.00.201.0 × 10−525002.550.20
    CA 砂浆10.00.201.0 × 10−520002.550.03
    宽窄接缝31.50.201.0 × 10−52500
    下载: 导出CSV
  • [1] 戴公连,葛浩. 桥上纵连板式无砟轨道初始状态特征统计分析[J]. 铁道工程学报,2020,37(9): 1-6. doi: 10.3969/j.issn.1006-2106.2020.09.001

    DAI Gonglian, GE Hao. Statistical analysis of the initial state characteristics of the longitudinally connected ballastless track on bridge[J]. Journal of Railway Engineering Society, 2020, 37(9): 1-6. doi: 10.3969/j.issn.1006-2106.2020.09.001
    [2] 刘笑凯,刘学毅,肖杰灵,等. 温度作用下纵连式无砟轨道垂向稳定性研究[J]. 西南交通大学学报,2018,53(5): 921-927,944. doi: 10.3969/j.issn.0258-2724.2018.05.007

    LIU Xiaokai, LIU Xueyi, XIAO Jieling, et al. Vertical stability of longitudinal continuous ballastless track under temperature variation[J]. Journal of Southwest Jiaotong University, 2018, 53(5): 921-927,944. doi: 10.3969/j.issn.0258-2724.2018.05.007
    [3] FENG Q S, CHAO H Y, LEI X Y. Influence of the seam between slab and CA mortar of CRTSⅡ ballastless track on vibration characteristics of vehicle-track system[J]. Procedia Engineering, 2017, 199: 2543-2548. doi: 10.1016/j.proeng.2017.09.259
    [4] 钟阳龙,高亮,侯博文. 不同植筋方案纵连板轨道砂浆层抗剪性能分析[J]. 西南交通大学学报,2018,53(1): 38-45,63. doi: 10.3969/j.issn.0258-2724.2018.01.005

    ZHONG Yanglong, GAO Liang, HOU Bowen. Shear behavior of mortar layer in continuous slab track with different arrangement schemes of embedded steel bars[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 38-45,63. doi: 10.3969/j.issn.0258-2724.2018.01.005
    [5] 许玉德,缪雯颖,严道斌,等. 基于改进混合模式内聚力模型的无砟轨道层间损伤分析[J]. 铁道学报,2021,43(4): 125-135. doi: 10.3969/j.issn.1001-8360.2021.04.016

    XU Yude, MIAO Wenying, YAN Daobin, et al. Analysis of interlayer interface damage in ballastless track based on improved mixed-mode cohesive zone model[J]. Journal of the China Railway Society, 2021, 43(4): 125-135. doi: 10.3969/j.issn.1001-8360.2021.04.016
    [6] 闫斌,娄徐瑞利,谢浩然,等. 冻胀冻融作用下材料劣化对板式无砟轨道性能的影响[J]. 交通运输工程学报,2021,21(5): 62-73. doi: 10.19818/j.cnki.1671-1637.2021.05.005

    YAN Bin, LOU Xuruili, XIE Haoran, et al. Effect of material deterioration on slab ballastless track performance under frost heaving and freezing-thawing[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 62-73. doi: 10.19818/j.cnki.1671-1637.2021.05.005
    [7] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326. doi: 10.1016/0020-7683(89)90050-4
    [8] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892-900. doi: 10.1061/(ASCE)0733-9399(1998)124:8(892)
    [9] SARIKAYA A, ERKMEN R E. A plastic-damage model for concrete under compression[J]. International Journal of Mechanical Sciences, 2019, 150: 584-593. doi: 10.1016/j.ijmecsci.2018.10.042
    [10] PARK K, PAULINO G H. Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces[J]. Applied Mechanics Reviews, 2011, 64(6): 060802.1-060802.20.
    [11] LÓPEZ-PUENTE J, ARIAS A, ZAERA R, et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours: an experimental and numerical study[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 321-336.
    [12] YANG J F, LIAN H J, NGUYEN V P. Study of mixed mode Ⅰ/Ⅱ cohesive zone models of different rank coals[J]. Engineering Fracture Mechanics, 2021, 246: 107611.1-107611.16.
    [13] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
    [14] 张劲,王庆扬,胡守营,等. ABAQUS混凝土损伤塑性模型参数验证[J]. 建筑结构,2008,38(8): 127-130. doi: 10.19701/j.jzjg.2008.08.036

    ZHANG Jin, WANG Qingyang, HU Shouying, et al. Parameters verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008, 38(8): 127-130. doi: 10.19701/j.jzjg.2008.08.036
    [15] 李培刚. CRTSⅡ型板式轨道层间损伤及其影响研究[D]. 成都: 西南交通大学, 2015.
    [16] 李再帏,吴刚,朱文发,等. 基于Lamb波的CRTSⅡ型板式无砟轨道层间损伤检测方法[J]. 铁道学报,2020,42(12): 120-126. doi: 10.3969/j.issn.1001-8360.2020.12.016

    LI Zaiwei, WU Gang, ZHU Wenfa, et al. CRTSⅡ slab ballastless track interlayer damage detection method based on Lamb wave[J]. Journal of the China Railway Society, 2020, 42(12): 120-126. doi: 10.3969/j.issn.1001-8360.2020.12.016
    [17] 赵国堂,刘钰. CRTSⅡ型板式无砟轨道结构层间离缝机理研究[J]. 铁道学报,2020,42(7): 117-126.

    ZHAO Guotang, LIU Yu. Mechanism analysis of delamination of CRTS Ⅱ slab ballastless track structure[J]. Journal of the China Railway Society, 2020, 42(7): 117-126.
    [18] 张鹏飞,涂建,桂昊,等. 温梯荷载下桥上CRTSⅡ型板式无砟轨道的力学特性[J]. 西南交通大学学报,2021,56(5): 945-952.

    ZHANG Pengfei, TU Jian, GUI Hao, et al. Mechanical properties of CRTS Ⅱ slab ballastless track on bridge under temperature gradient loads[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 945-952.
    [19] 欧祖敏,孙璐,程群群. 基于气象资料的无砟轨道温度场计算与分析[J]. 铁道学报,2014,36(11): 106-112. doi: 10.3969/j.issn.1001-8360.2014.11.021

    OU Zumin, SUN Lu, CHENG Qunqun. Analysis on temperature field of ballastless track structure based on meteorological data[J]. Journal of the China Railway Society, 2014, 36(11): 106-112. doi: 10.3969/j.issn.1001-8360.2014.11.021
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  85
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-02-24
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2022-04-14

目录

    /

    返回文章
    返回