• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

鲜水河构造带某隧道地应力反演与分析

索朗 徐正宣 冯涛 王哲威 伊小娟 林之恒 李伟

索朗, 徐正宣, 冯涛, 王哲威, 伊小娟, 林之恒, 李伟. 鲜水河构造带某隧道地应力反演与分析[J]. 西南交通大学学报, 2022, 57(2): 331-338. doi: 10.3969/j.issn.0258-2724.20210945
引用本文: 索朗, 徐正宣, 冯涛, 王哲威, 伊小娟, 林之恒, 李伟. 鲜水河构造带某隧道地应力反演与分析[J]. 西南交通大学学报, 2022, 57(2): 331-338. doi: 10.3969/j.issn.0258-2724.20210945
SUO Lang, XU Zhengxuan, FENG Tao, WANG Zhewei, YI Xiaojuan, LIN Zhiheng, LI Wei. Back-Calculation of In-situ Stress of Railway Tunnel in Xianshuihe Fault Belt[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 331-338. doi: 10.3969/j.issn.0258-2724.20210945
Citation: SUO Lang, XU Zhengxuan, FENG Tao, WANG Zhewei, YI Xiaojuan, LIN Zhiheng, LI Wei. Back-Calculation of In-situ Stress of Railway Tunnel in Xianshuihe Fault Belt[J]. Journal of Southwest Jiaotong University, 2022, 57(2): 331-338. doi: 10.3969/j.issn.0258-2724.20210945

鲜水河构造带某隧道地应力反演与分析

doi: 10.3969/j.issn.0258-2724.20210945
基金项目: 四川省重点研发项目(2019YFG0460)
详细信息
    作者简介:

    索朗(1980—),男,高级工程师,研究方向为地质工程,E-mail:3011436@qq.com

    通讯作者:

    徐正宣(1977—),男,教授级高级工程师,博士研究生,研究方向为岩土与地下工程,E-mail:30567351@qq.com

  • 中图分类号: TU443

Back-Calculation of In-situ Stress of Railway Tunnel in Xianshuihe Fault Belt

  • 摘要:

    地应力的分布规律严重影响地下工程建设,获得开展工程区域地应力场分布对指导支护结构的设计具有重要意义.在鲜水河断裂带某隧道工程区采用钻孔水压致裂法进行了深孔地应力测试,基于地应力测试结果,得到了开展工程区域地应力随深度的变化规律,并利用数值模拟进行地应力反演. 结果表明:地应力随深度的增加而逐渐增加,其中最大水平地应力的递增梯度为0.385 MPa/km,最小水平主应力递增梯度为0.257 MPa/km;隧道纵断面水平最大主应力为41.69 MPa,最小主应力为29.84 MPa,侧压力系数为1.363~1.438,围岩应力以水平应力为主;地应力在断层部位得到了一定程度的释放,断层两侧的完整岩体应力存在一定程度的集中,应力值较高.

     

  • 图 1  隧道地貌

    Figure 1.  Tunnel topography map

    图 2  研究区大地构造

    Figure 2.  Tectonic map of the study area

    图 3  隧道纵剖面及地应力测孔

    Figure 3.  Tunnel profile and borehole map for in-situ stress measurement

    图 4  DZ-04号测孔地应力沿深度分布规律

    Figure 4.  Distribution law of ground stress along depth in dZ-04 measuring hole

    图 5  模型计算示意

    Figure 5.  Model calculation diagram

    图 6  边界条件示意

    Figure 6.  Schematic diagram of boundary conditions

    图 7  隧道最大主应力云图及数值折线图

    Figure 7.  Cloud diagram and numerical broken-line diagram of maximum principal stress of tunnel

    图 8  隧道中间主应力云图

    Figure 8.  Cloud diagram of principal stress in the middle of tunnel

    图 9  隧道最小主应力云图

    Figure 9.  Cloud diagram of minimum principal stress of tunnel

    表  1  DZ-04号测孔水压致裂地应力测量结果

    Table  1.   Measurement results of ground stress caused by water pressure in borehole DZ-04

    测段序号测段中心深度/m压裂参数/MPa应力值/MPa破裂方向/(°)
    P0PbPrPsTσHσhσv
    1685.0~685.715.9826.2020.9519.215.2520.2815.9817.81N53W
    2624.0~624.714.7824.2619.7618.134.5018.4614.7816.22N58W
    3504.0~504.711.6918.0014.5013.293.5015.6311.6913.10N65W
    4440.0~440.79.8815.4312.0111.493.4213.329.8811.44
    5380.0~380.78.9413.5012.1110.341.3910.998.949.88
    下载: 导出CSV

    表  2  不同钻孔地应力拟合结果

    Table  2.   In-situ stress fitting results of different boreholes

    孔号拟合公式最大值/
    MPa
    最小值/
    MPa
    DZ-01σH=0.031 2H−8.027 0
    σh=0.010 9H + 0.328 0
    14.2411.19
    DZ-01-1σH=0.022 8H−1.417 0
    σh=0.009 1H + 3.226 0
    17.8810.84
    DZ-01-2σH=0.023 3H−0.188 4
    σh=0.014 1H + 1.029 9
    11.447.91
    DZ-02σH=0.042 6H−6.773 9
    σh=0.031 9H−4.133 3
    36.9128.53
    DZ-03-1σH=0.038 9H−2.014 1
    σh=0.025 4H + 1.037 8
    41.6929.84
    DZ-04σH=0.033 9H−0.106 7
    σh=0.027 3H−0.073 8
    27.8522.12
    DZ-04-2σH=0.040 2H−2.167 2
    σh=0.027 2H + 0.383 1
    27.8620.39
    DZ07σH=0.018 4H + 3.284 6
    σh=0.013 4H + 1.547 3
    18.6513.49
    下载: 导出CSV

    表  3  隧道围岩物理力学参数

    Table  3.   Physical and mechanical parameters of tunnel surrounding rock

    地层围岩
    级别
    弹性模量/GPa泊松比体积模量/GPa剪切模量/GPa密度/
    (kg•m−3
    板岩 20 0.32 18.52 13.20 2 630
    6 0.35 6.67 4.05 2 600
    花岗岩 50 0.25 33.33 31.25 2 750
    20 0.30 16.67 13.00 2 650
    6 0.35 6.67 4.05 2 600
    糜棱岩 22 0.30 18.33 14.30 2 650
    8 0.35 8.89 5.40 2 620
    下载: 导出CSV

    表  4  隧道断层破碎带力学参数

    Table  4.   Mechanical parameters of tunnel fault fracture zone

    断层弹性模量/
    GPa
    泊松比体积模量/
    GPa
    剪切模量/
    GPa
    密度/
    (kg•m−3
    F19.00.245.773.632 250
    F28.50.255.673.402 250
    F48.10.255.403.242 250
    F58.20.255.473.282 250
    F67.90.265.493.132 250
    F77.50.265.212.982 250
    下载: 导出CSV

    表  5  DZ-04应力计算结果与实测应力值对比

    Table  5.   Comparison between calculated and measured results of dZ-04 horizontal principal stress

    测段序号深度/m$\sigma_{\rm{H}} $$\sigma_{\rm{h}} $$\sigma_{\rm{v}} $
    实测/MPa计算/MPa拟合度/%实测/MPa计算/MPa拟合度/%实测/MPa计算/MPa拟合度/%
    1 835.7 27.85 30.8 111 22.12 21.87 99 21.71 23.45 108
    2 705.7 24.23 27.56 114 20.45 19.45 95 18.33 20.22 110
    3 635.7 21.27 22.35 105 16.74 17.36 104 16.51 14.53 88
    4 540.7 18.80 18.56 99 14.58 15.98 110 14.04 12.56 89
    5 455.7 14.78 14.32 97 12.23 13.65 112 11.83 9.76 83
    下载: 导出CSV

    表  6  DZ-07应力计算结果与实测应力值对比

    Table  6.   Comparison between calculated and measured results of dZ-07 maximum horizontal principal stress

    测段序号深度/m$\sigma_{\rm{H}} $$\sigma_{\rm{h}} $$\sigma_{\rm{v}} $
    实测/MPa计算/MPa拟合度/%实测/MPa计算/MPa拟合度/%实测/MPa计算/MPa拟合度/%
    1 294.5 8.91 8.45 95 5.85 6.21 106 7.80 8.32 107
    2 382.5 10.39 11.20 108 7.13 8.02 112 10.14 11.23 111
    3 546.6 13.03 12.67 97 9.07 10.08 111 14.48 15.64 108
    4 659.5 15.06 14.76 98 10.80 11.78 109 17.48 18.56 106
    5 758.5 17.75 16.87 95 12.69 13.65 108 20.10 21.47 107
    6 835.0 18.65 19.19 103 13.49 15.04 111 22.13 24.51 111
    下载: 导出CSV

    表  7  隧道各里程段最大主应力值

    Table  7.   Maximum principal stress in each mileage section of tunnel

    地层或断层编号里程段最大主应力
    值/MPa
    D1 CK260 + 150~CK261 + 000 6.86~9.02
    F1 CK261 + 000~CK261 + 200 3.80~7.97
    D1 CK261 + 200~CK262 + 154 8.75~13.57
    F2 CK262 + 154~CK262 + 405 4.53~14.33
    D1 CK262 + 405~CK263 + 960 13.60~17.48
    F4 CK263 + 960~CK264 + 412 9.47~27.13
    D2 CK264 + 412~CK265 + 892 21.32~26.62
    D3 CK265 + 892~CK266 + 717 25.80~30.15
    D4 CK266 + 717~CK267 + 726 25.80~30.15
    D3 CK267 + 726~CK267 + 873 25.80~30.15
    D3 CK267 + 873~CK268 + 652 30.01~32.14
    D3 CK268 + 652~CK272 + 488 22.94~29.83
    F5 CK272 + 488~CK272 + 639 10.58~18.84
    D3 CK272 + 639~CK275 + 648 13.63~21.40
    F6 CK275 + 648~CK275 + 954 8.86~14.36
    D5 CK275 + 954~CK277 + 880 1.49~12.81
    下载: 导出CSV
  • [1] 朱光仪,郭小红,陈卫忠,等. 雪峰山公路隧道地应力场反演及工程应用[J]. 中南公路工程,2006,31(1): 71-75.

    ZHU Guangyi, GUO Xiaohong, CHEN Weizhong, et al. Inversion of in situ Stress and its application in xuefengshan roadway tunnel[J]. Gentral South Highway Engineering, 2006, 31(1): 71-75.
    [2] 邱祥波,李术才,李树忱. 三维地应力回归分析方法与工程应用[J]. 岩石力学与工程学报,2003(10): 1613-1617. doi: 10.3321/j.issn:1000-6915.2003.10.007

    QIU Xiangbo, LI Shucai, LI Shuchen, et al. 3D Geostress regression analysis method and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(10): 1613-1617. doi: 10.3321/j.issn:1000-6915.2003.10.007
    [3] 郭运华,朱维申,李新平,等. 基于FLAC3D改进的初始地应力场回归方法[J]. 岩土工程学报,2014,36(5): 892-898. doi: 10.11779/CJGE201405012

    GUO Yunhua, ZHU Weishen, LI Xinping, et al. Improved regression method for initial geostress based on FLAC3D[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 892-898. doi: 10.11779/CJGE201405012
    [4] 李金锁,彭华,马秀敏,等. 大丽线铁路隧道工程地应力三维有限元数值模拟分析[J]. 岩土工程学报,2006,28(6): 800-803. doi: 10.3321/j.issn:1000-4548.2006.06.025

    LI Jinsuo, PENG Hua, MA Xiumin, et al. Three-dimensional finite element numerical simulation of geo-stress in Da-Li Railway tunnel of Yunnan[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 800-803. doi: 10.3321/j.issn:1000-4548.2006.06.025
    [5] 白世伟,韩昌瑞,顾义磊,等. 隧道应力扰动区地应力测试及反演研究[J]. 岩土力学,2008,29(11): 2887-2891. doi: 10.3969/j.issn.1000-7598.2008.11.001

    BAI Shiwei, HAN Changrui, GU Yilei, et al. Researth on crustral strese measurement and inversion of stress disturbed area of a tunnel[J]. Rock and Soil Mechanics, 2008, 29(11): 2887-2891. doi: 10.3969/j.issn.1000-7598.2008.11.001
    [6] 赵跃堂,范斌,梁晖,等. 大型深埋隧道初始地应力状态的确定[J]. 地下空间与工程学报,2008,4(1): 147-151.

    ZHAO Yuetang, FAN Bin, LIANG Hui, et al. Determination of initial earth stress of large deeply-buried tunnel[J]. Chinese Journal of Underground Space and Engineering, 2008, 4(1): 147-151.
    [7] 夏彬伟,李晓红,韩昌瑞,等. 深埋隧道层状岩体地应力反演研究[J]. 水文地质工程地质,2009,36(4): 75-79. doi: 10.3969/j.issn.1000-3665.2009.04.017

    XIA Binwei, LI Xiaohong, HAN CHangrui, et al. Study on inversion of in-situ stress of layered rockmass in buried tunnel[J]. Hydrogeology & Engineering Geology, 2009, 36(4): 75-79. doi: 10.3969/j.issn.1000-3665.2009.04.017
    [8] 田勇,俞然刚,张能,等. 基于ANSYS软件地应力反演的数值实验技术[J]. 实验技术与管理,2019,36(2): 168-170.

    TIAN Yong, YU Rangang, ZHANG Neng, et al. Numerical experimental technology for geo-stress inversion based on ANSYS software[J]. Experimental Technology and Management, 2019, 36(2): 168-170.
    [9] 刘宁,张春生,褚卫江,等. 超深埋长隧道地应力场综合反分析方法与应用[J]. 中国公路学报,2018,31(10): 69-78. doi: 10.3969/j.issn.1001-7372.2018.10.007

    LIU Ning, ZHANG Chunsheng, CHU Weijiang, et al. Comprehensive inversion analysis method and application of deep buried long tunnel geo-stress field[J]. China Journal of Highway and Transport, 2018, 31(10): 69-78. doi: 10.3969/j.issn.1001-7372.2018.10.007
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  90
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 录用日期:  2022-03-24
  • 修回日期:  2022-03-03
  • 刊出日期:  2022-03-24

目录

    /

    返回文章
    返回