Optimization of Travel Mode Choice Based on MA-CPT Model
-
摘要:
为提高累积前景理论在出行方式选择建模应用中的准确性,考虑个体对于时间与费用货币态度的不同,优化原始累积前景理论(cumulative prospect theory,CPT)模型的时间值函数和时间权重函数. 首先,针对时间压力下出行方式偏好发生转变的现象,将出行方式分为刚性出行和弹性出行,改进刚性出行情景下的时间值函数形式,并根据出行时间特性求出时间权重函数中吸引力参数的取值范围,构建MA-CPT (mental accounting-cumulative prospect theory)模型;其次,根据实证数据标定时间权重函数中辨别力参数和吸引力参数的取值;最后,标定 MA-CPT模型结果并检验其拟合优度,对比MA-CPT模型和CPT模型的命中率. 实证分析结果表明:刚性出行和单行出行场景下,时间权重函数的吸引力参数值均大于1.00;MA-CPT模型在刚性出行和弹性出行情境下的拟合优度分别为0.17和0.18;相比于CPT模型,MA-CPT模型在弹性出行和刚性出行情景下的命中率分别提高了12.2%和19.8%.
Abstract:To improve the accuracy of cumulative prospect theory in modeling travel mode choice, given the differences in individual attitudes toward time and costs, the time value function and time weight function of the original cumulative prospect theory model are optimized. Firstly, in view of the preference reversal under time pressure, the travel mode is divided into rigid travel and flexible travel, the form of the time value function under the rigid travel scenario is improved, and the value range of the attraction parameter in the time weight function is calculated according to the travel time characteristics, and the MA-CPT (mental accounting-cumulative prospect theory) model is constructed. Secondly, the values of discrimination and attractiveness parameters in the time weight function are calibrated according to empirical data. Finally, the MA-CPT model is calibrated and its goodness of fit is tested, and the hit rates of MA-CPT and CPT models are compared. The empirical analysis results show that the attraction parameter value of the time weight function is greater than 1.00 under the scenarios of rigid travel and one-way travel. The goodness of fit of the MA-CPT model under rigid travel and flexible travel scenarios are 0.17 and 0.18, respectively. Compared with the CPT model, the hit rate of the MA-CPT model under flexible travel and rigid travel scenarios has increased by 12.2% and 19.8%, respectively.
-
表 1 选择肢属性及属性水平
Table 1. Alternative attributes and attribute levels
选择肢 属性 水平 1 水平 2 水平 3 水平4 方式 1 行程时间/min 25 50 费用/元 10 30 时间风险/% 30 40 60 70 方式 2 行程时间/min 30 40 费用/元 2 5 时间风险/% 30 40 60 70 表 2 个体属性特征统计
Table 2. Statistics of individual attribute characteristics
个体属性 占比% 性别 女 55 男 45 年龄 < 30 岁 9 [30 岁,40 岁) 27 [40 岁,50 岁) 16 [50 岁,60 岁) 35 ≥ 60 岁 10 受教育程度 高中及以下 43 专科及本科 45 硕士及以上 12 月收入 < 2000 元 19 [2000,4000)元 21 [4000,6000)元 35 [6000,8000)元 17 ≥ 8000 元 8 表 3 时间权重函数的参数标定结果
Table 3. Parameter calibration results of time weight function
出行情景 值函数收益、损失情况 δ α 刚性出行 收益 0.72 1.19 损失 0.76 1.21 弹性出行 收益 0.61 1.67 损失 0.64 1.92 表 4 MA-CPT模型的参数估计结果
Table 4. Parameter estimation results of MA-CPT model
出行情景 选择方式 属性 参数值 T 值 拟合优度 刚性出行 方式 1 费用 0.17309 6.98* 0.17 时间 0.01822 3.58* 方式 2 费用 0.06865 −1.38 时间 0.11086 4.25* 弹性出行 方式 1 费用 0.16611 6.09* 0.18 时间 0.34679 1.24 方式 2 费用 0.08255 −1.93 时间 0.41851 1.39 注:*表示在10%的水平上显著. 表 5 CPT与MA-CPT命中率对比
Table 5. Comparison of hit rates between CPT and MA-CPT
% 出行情景 CPT MA-CPT 刚性出行 72.6 92.4 弹性出行 64.5 76.7 -
[1] SIMON H A. Bounded rationality in social science: today and tomorrow[J]. Mind & Society, 2000, 1(1): 25-39. [2] 张波,隽志才,倪安宁. 前景理论在出行行为研究中的适用性[J]. 北京理工大学学报(社会科学版),2013,15(1): 54-62. doi: 10.15918/j.jbitss1009-3370.2013.01.005ZHANG Bo, JUAN Zhicai, NI Anning. The applicability of prospect theory in travel behavior research[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2013, 15(1): 54-62. doi: 10.15918/j.jbitss1009-3370.2013.01.005 [3] KAHNEMAN D, TVERSKY A. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263-291. doi: 10.2307/1914185 [4] TVERSKY A, KAHNEMAN D. Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4): 297-323. doi: 10.1007/BF00122574 [5] ZHANG C, LIU T L, HUANG H J, et al. A cumulative prospect theory approach to commuters’ day-to-day route-choice modeling with friends’ travel information[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 527-548. doi: 10.1016/j.trc.2017.12.005 [6] HUANG C, BURRIS M, SHAW W D. Differences in probability weighting for individual travelers: a managed lane choice application[J]. Transportation, 2017, 44(2): 375-393. doi: 10.1007/s11116-015-9642-x [7] SENBIL M, KITAMURA R. Reference points in commuter departure time choice: a prospect theoretic test of alternative decision frames[J]. Journal of Intelligent Transportation Systems, 2004, 8(1): 19-31. doi: 10.1080/15472450490437726 [8] 陈林,杨飞,姜海航,等. 基于心理账户理论的交通出行选择行为[J]. 上海交通大学学报,2016,50(8): 1214-1220. doi: 10.16183/j.cnki.jsjtu.2016.08.012CHEN Lin, YANG Fei, JIANG Haihang, et al. A study of travel choice behavior based on mental accounting[J]. Journal of Shanghai Jiao Tong University, 2016, 50(8): 1214-1220. doi: 10.16183/j.cnki.jsjtu.2016.08.012 [9] GAO K, SUN L, YANG Y, et al. Cumulative prospect theory coupled with multi-attribute decision making for modeling travel behavior[J]. Transportation Research Part A: Policy and Practice, 2021, 148(7): 1-21. [10] GAO S, FREJINGER E, BEN-AKIVA M. Adaptive route choices in risky traffic networks: a prospect theory approach[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(5): 727-740. doi: 10.1016/j.trc.2009.08.001 [11] 陈林. 基于心理账户论的交通决策行为建模分析[D]. 成都: 西南交通大学, 2017. [12] DUXBURY D, KEASEY K, ZHANG H, et al. Mental accounting and decision making: evidence under reverse conditions where money is spent for time saved[J]. Journal of Economic Psychology, 2005, 26(4): 567-580. doi: 10.1016/j.joep.2004.11.001 [13] ALÓS-FERRER C, GRANIĆ Ð G, KERN J, et al. Preference reversals: time and again[J]. Journal of Risk and Uncertainty, 2016, 52(1): 65-97. doi: 10.1007/s11166-016-9233-z [14] THALER R H. Mental accounting matters[J]. Journal of Behavioral Decision Making, 1999, 12(3): 183-206. doi: 10.1002/(SICI)1099-0771(199909)12:3<183::AID-BDM318>3.0.CO;2-F [15] HENSHER D A, GREENE W H, LI Z. Embedding risk attitude and decision weights in non-linear logit to accommodate time variability in the value of expected travel time savings[J]. Transportation Research Part B: Methodological, 2011, 45(7): 954-972. doi: 10.1016/j.trb.2011.05.023 [16] HAUSTEIN S, THORHAUGE M, CHERCHE E. Commuters’ attitudes and norms related to travel time and punctuality: a psychographic segmentation to reduce congestion[J]. Travel Behaviour and Society, 2018, 12: 41-50. doi: 10.1016/j.tbs.2018.04.001 [17] GONZALEZ R, WU G. On the shape of the probability weighting function[J]. Cognitive Psychology, 1999, 38(1): 129-166. doi: 10.1006/cogp.1998.0710 [18] TRAIN K E. Discrete choice methods with simulation[M]. Cambridge: Cambridge University Press, 2009. [19] LI H, GAO K, TU H. Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: implications for demand estimation[J]. Transportation Research Part A: Policy and Practice, 2017, 103: 250-263. doi: 10.1016/j.tra.2017.06.009 [20] HENSHER D A, ROSE J M, GREENE W H. Applied choice analysis[M]. 2nd edition. Cambridge: Cambridge University Press, 2015