Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure
-
摘要:
为模拟高速磁浮列车悬浮系统运动过程并分析不同条件下的系统响应,本文围绕悬浮系统建模、控制器设计和仿真分析展开研究. 首先,介绍以搭接结构为基本单元的高速磁浮列车悬浮系统的基本结构与工作原理,通过机理分析方法构建理想情况下的悬浮系统数学模型;然后,对悬浮系统模型进行合理简化,并针对简化模型设计标称控制器;最后,仿真验证了标称控制器的控制效果,并对比分析仿真和实验条件下永磁电磁混合悬浮系统的起浮降落过程. 研究结果表明:仿真得到的悬浮间隙、悬浮电流等物理量的变化情况与实际系统的变化趋势吻合,稳态时误差小于5%.
Abstract:In order to simulate the motion process of the levitation system of high-speed maglev trains and analyze the system response under different conditions, it is necessary to establish a levitation system model and conduct controller design and simulation analysis. Firstly, the basic structure and working principle of the levitation system of high-speed maglev trains with the joint structure as the basis unit were introduced. The mathematical model of the levitation system under ideal conditions was derived through a mechanism analysis method. Then, the levitation system model was simplified reasonably, and a nominal controller was designed for the simplified model. Finally, the control effect of the nominal controller was verified through simulation, and the levitating and landing processes of the permanent magnet and electromagnetic hybrid levitation system under simulation and experimental conditions were compared. The results show that the variation of physical quantities such as levitation gap and levitation current obtained from the simulation coincides with the trend of the actual system, with an error of less than 5% during static levitation.
-
Key words:
- high-speed maglev train /
- levitation system /
- simulation analysis
-
表 1 高速磁浮列车悬浮系统参数
Table 1. Parameters of levitation system of high-speed maglev train
参数 数值 $ {k_{\rm{pe}}} $/(Nm2·A−2) 0.0014 ${k_{\rm{e}}}$/(Nm2·A−2) 0.00545 α/A 48.147 β/m 0.00068 -
[1] 龚俊虎,谢海林,鄢巨平,等. 全速度谱系磁浮交通的技术发展与应用前景[J]. 城市轨道交通研究,2020,23(9): 61-64,69.GONG Junhu, XIE Hailin, YAN Juping, et al. Development and application prospect of full-speed spectrum maglev transportation technology[J]. Urban Mass Transit, 2020, 23(9): 61-64,69. [2] 孙玉玲,秦阿宁,董璐. 全球磁浮交通发展态势、前景展望及对中国的建议[J]. 世界科技研究与发展,2019,41(2): 109-119.SUN Yuling, QIN Aning, DONG Lu. Research on development and prospects of maglev transportation and suggestions to China[J]. World Sci-Tech R & D, 2019, 41(2): 109-119. [3] JANIC M. Multicriteria evaluation of the high speed rail, transrapid maglev and hyperloop systems[J]. Transportation Systems and Technology, 2018, 4(4): 5-31. doi: 10.17816/transsyst2018445-31 [4] HAN H S, KIM D S. Magnetic levitation: maglev technology and applications[M]. Dordrecht: Springer, 2016. [5] MEINS J, MILLER L, MAYER W J. The high speed Maglev transport system TRANSRAPID[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347 [6] LIU Z G, LONG Z Q, LI X L. Maglev trains: key underlying technologies[M]. Heidelberg: Springer, 2015 [7] 郝阿明. 常导高速磁浮列车悬浮导向系统关键控制技术研究[D]. 长沙: 国防科技大学, 2008. [8] WANG Z Q, LONG Z Q, LI X L. Levitation control of permanent magnet electromagnetic hybrid suspension maglev train[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2018, 232(3): 315-323. doi: 10.1177/1350650117713878 [9] 刘曰锋,李良杰,张丽,等. 基于虚拟样机技术的中低速磁浮列车运行平稳性仿真分析[J]. 智慧轨道交通,2022,59(1): 62-67. doi: 10.3969/j.issn.2097-0366.2022.01.012LIU Yuefeng, LI Liangjie, ZHANG Li, et al. Simulation analysis of running stability of medium and low speed maglev train based on virtual prototype technology[J]. Smart Rail Transit, 2022, 59(1): 62-67. doi: 10.3969/j.issn.2097-0366.2022.01.012 [10] DOUGHERTY D, COOPER D. A practical multiple model adaptive strategy for multivariable model predictive control[J]. Control Engineering Practice, 2003, 11(6): 649-664. doi: 10.1016/S0967-0661(02)00170-3 [11] SUN Y G, XU J Q, LIN G B, et al. RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 509-519. doi: 10.1109/TII.2020.3032235 [12] XU Y S, LONG Z Q, ZHAO Z G, et al. Real-time stability performance monitoring and evaluation of maglev trains’ levitation system: a data-driven approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1912-1923. doi: 10.1109/TITS.2020.3029905 [13] XU Y S, YIN S, DING S X, et al. Performance degradation monitoring and recovery of vision-based control systems[J]. IEEE Transactions on Control Systems Technology, 2021, 29(6): 2712-2719. doi: 10.1109/TCST.2020.3042883 [14] LI J H, LI J, ZHOU D F, et al. The active control of maglev stationary self-excited vibration with a virtual energy harvester[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2942-2951. doi: 10.1109/TIE.2014.2364788 [15] SUN Y G, XU J Q, QIANG H Y, et al. Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8589-8599. doi: 10.1109/TIE.2019.2891409 [16] HERNÁNDEZ-GUZMÁN V M, SILVA-ORTIGOZA R. Current loops in a magnetic levitation system[J]. International Journal of Innovative Computing Information and Control, 2009, 5(5): 1275-1283. [17] OGATA K. Modern control engineering[M]. 5th ed. Boston: Prentice Hall, 2010.