• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速磁浮列车搭接结构悬浮系统仿真分析

王志强 龙志强 李晓龙

王志强, 龙志强, 李晓龙. 高速磁浮列车搭接结构悬浮系统仿真分析[J]. 西南交通大学学报, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932
引用本文: 王志强, 龙志强, 李晓龙. 高速磁浮列车搭接结构悬浮系统仿真分析[J]. 西南交通大学学报, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932
WANG Zhiqiang, LONG Zhiqiang, LI Xiaolong. Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932
Citation: WANG Zhiqiang, LONG Zhiqiang, LI Xiaolong. Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 590-599. doi: 10.3969/j.issn.0258-2724.20210932

高速磁浮列车搭接结构悬浮系统仿真分析

doi: 10.3969/j.issn.0258-2724.20210932
基金项目: 国家自然科学基金(52332011);湖南省自然科学基金(2022JJ40560)
详细信息
    作者简介:

    王志强(1990—),男,讲师,研究方向为磁浮列车悬浮导向控制,E-mail:wangzhiqiang12@nudt.edu.cn

    通讯作者:

    李晓龙(1979—),男,副研究员,研究方向为磁悬浮技术,E-mail:13787786254@163.com

  • 中图分类号: TP2

Simulation Analysis of Levitation System of High-Speed Maglev Trains with Joint Structure

  • 摘要:

    为模拟高速磁浮列车悬浮系统运动过程并分析不同条件下的系统响应,本文围绕悬浮系统建模、控制器设计和仿真分析展开研究. 首先,介绍以搭接结构为基本单元的高速磁浮列车悬浮系统的基本结构与工作原理,通过机理分析方法构建理想情况下的悬浮系统数学模型;然后,对悬浮系统模型进行合理简化,并针对简化模型设计标称控制器;最后,仿真验证了标称控制器的控制效果,并对比分析仿真和实验条件下永磁电磁混合悬浮系统的起浮降落过程. 研究结果表明:仿真得到的悬浮间隙、悬浮电流等物理量的变化情况与实际系统的变化趋势吻合,稳态时误差小于5%.

     

  • 图 1  高速磁浮列车结构示意

    Figure 1.  High-speed maglev train structure

    图 2  高速磁浮列车悬浮搭接结构示意

    Figure 2.  Levitation joint structure of high-speed maglev train

    图 3  高速磁浮列车悬浮电磁铁结构示意

    Figure 3.  Structure of levitation electromagnet of high-speed maglev train

    图 4  搭接结构悬浮系统受力分析图

    Figure 4.  Kinetics analysis of levitation system with joint structure

    图 5  悬浮系统控制器结构

    Figure 5.  Structure of levitation system controller

    图 6  起浮过程搭接结构悬浮系统动态响应

    Figure 6.  Dynamic responses of levitation system with joint structure during levitating and landing processes

    图 7  静浮过程搭接结构悬浮系统动态响应

    Figure 7.  Dynamic responses of levitation system with joint structure during static levitation

    图 8  降落过程搭接结构悬浮系统动态响应

    Figure 8.  Dynamic responses of levitation system with joint structure during landing

    图 9  静态悬浮降落测试曲线

    Figure 9.  Static levitation and landing test curves

    图 10  磁浮列车运行时悬浮间隙响应

    Figure 10.  Responses of levitation gap when maglev train is operating

    图 11  磁浮列车静浮在水泥轨道梁上时悬浮间隙响应

    Figure 11.  Responses of levitation gap when maglev train is statically levitating on a concrete track beam

    表  1  高速磁浮列车悬浮系统参数

    Table  1.   Parameters of levitation system of high-speed maglev train

    参数数值
    $ {k_{\rm{pe}}} $/(Nm2·A−20.0014
    ${k_{\rm{e}}}$/(Nm2·A−20.00545
    α/A48.147
    β/m0.00068
    下载: 导出CSV
  • [1] 龚俊虎,谢海林,鄢巨平,等. 全速度谱系磁浮交通的技术发展与应用前景[J]. 城市轨道交通研究,2020,23(9): 61-64,69.

    GONG Junhu, XIE Hailin, YAN Juping, et al. Development and application prospect of full-speed spectrum maglev transportation technology[J]. Urban Mass Transit, 2020, 23(9): 61-64,69.
    [2] 孙玉玲,秦阿宁,董璐. 全球磁浮交通发展态势、前景展望及对中国的建议[J]. 世界科技研究与发展,2019,41(2): 109-119.

    SUN Yuling, QIN Aning, DONG Lu. Research on development and prospects of maglev transportation and suggestions to China[J]. World Sci-Tech R & D, 2019, 41(2): 109-119.
    [3] JANIC M. Multicriteria evaluation of the high speed rail, transrapid maglev and hyperloop systems[J]. Transportation Systems and Technology, 2018, 4(4): 5-31. doi: 10.17816/transsyst2018445-31
    [4] HAN H S, KIM D S. Magnetic levitation: maglev technology and applications[M]. Dordrecht: Springer, 2016.
    [5] MEINS J, MILLER L, MAYER W J. The high speed Maglev transport system TRANSRAPID[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347
    [6] LIU Z G, LONG Z Q, LI X L. Maglev trains: key underlying technologies[M]. Heidelberg: Springer, 2015
    [7] 郝阿明. 常导高速磁浮列车悬浮导向系统关键控制技术研究[D]. 长沙: 国防科技大学, 2008.
    [8] WANG Z Q, LONG Z Q, LI X L. Levitation control of permanent magnet electromagnetic hybrid suspension maglev train[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2018, 232(3): 315-323. doi: 10.1177/1350650117713878
    [9] 刘曰锋,李良杰,张丽,等. 基于虚拟样机技术的中低速磁浮列车运行平稳性仿真分析[J]. 智慧轨道交通,2022,59(1): 62-67. doi: 10.3969/j.issn.2097-0366.2022.01.012

    LIU Yuefeng, LI Liangjie, ZHANG Li, et al. Simulation analysis of running stability of medium and low speed maglev train based on virtual prototype technology[J]. Smart Rail Transit, 2022, 59(1): 62-67. doi: 10.3969/j.issn.2097-0366.2022.01.012
    [10] DOUGHERTY D, COOPER D. A practical multiple model adaptive strategy for multivariable model predictive control[J]. Control Engineering Practice, 2003, 11(6): 649-664. doi: 10.1016/S0967-0661(02)00170-3
    [11] SUN Y G, XU J Q, LIN G B, et al. RBF neural network-based supervisor control for maglev vehicles on an elastic track with network time delay[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 509-519. doi: 10.1109/TII.2020.3032235
    [12] XU Y S, LONG Z Q, ZHAO Z G, et al. Real-time stability performance monitoring and evaluation of maglev trains’ levitation system: a data-driven approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1912-1923. doi: 10.1109/TITS.2020.3029905
    [13] XU Y S, YIN S, DING S X, et al. Performance degradation monitoring and recovery of vision-based control systems[J]. IEEE Transactions on Control Systems Technology, 2021, 29(6): 2712-2719. doi: 10.1109/TCST.2020.3042883
    [14] LI J H, LI J, ZHOU D F, et al. The active control of maglev stationary self-excited vibration with a virtual energy harvester[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2942-2951. doi: 10.1109/TIE.2014.2364788
    [15] SUN Y G, XU J Q, QIANG H Y, et al. Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8589-8599. doi: 10.1109/TIE.2019.2891409
    [16] HERNÁNDEZ-GUZMÁN V M, SILVA-ORTIGOZA R. Current loops in a magnetic levitation system[J]. International Journal of Innovative Computing Information and Control, 2009, 5(5): 1275-1283.
    [17] OGATA K. Modern control engineering[M]. 5th ed. Boston: Prentice Hall, 2010.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  139
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 修回日期:  2022-07-01
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回