• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

纵筋率对UHPC华夫桥面单向板抗弯承载力的影响

张锐 赵冉 刘振伦 胡棚 陈可道 李晰

张锐, 赵冉, 刘振伦, 胡棚, 陈可道, 李晰. 纵筋率对UHPC华夫桥面单向板抗弯承载力的影响[J]. 西南交通大学学报, 2023, 58(6): 1432-1439. doi: 10.3969/j.issn.0258-2724.20210923
引用本文: 张锐, 赵冉, 刘振伦, 胡棚, 陈可道, 李晰. 纵筋率对UHPC华夫桥面单向板抗弯承载力的影响[J]. 西南交通大学学报, 2023, 58(6): 1432-1439. doi: 10.3969/j.issn.0258-2724.20210923
ZHANG Rui, ZHAO Ran, LIU Zhenlun, HU Peng, CHEN Kedao, LI Xi. Effects of Longitudinal Reinforcement Ratio on Flexural Capacity of One-Way Slab of UHPC Waffle Bridge Deck[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1432-1439. doi: 10.3969/j.issn.0258-2724.20210923
Citation: ZHANG Rui, ZHAO Ran, LIU Zhenlun, HU Peng, CHEN Kedao, LI Xi. Effects of Longitudinal Reinforcement Ratio on Flexural Capacity of One-Way Slab of UHPC Waffle Bridge Deck[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1432-1439. doi: 10.3969/j.issn.0258-2724.20210923

纵筋率对UHPC华夫桥面单向板抗弯承载力的影响

doi: 10.3969/j.issn.0258-2724.20210923
基金项目: 国家自然科学基金(51808457);四川省科技厅国际科技创新合作项目(2020YFH0086)
详细信息
    作者简介:

    张锐(1986—),男,讲师,博士,研究方向为桥梁新材料与新结构,E-mail:rayz430@swjtu.edu.cn

  • 中图分类号: U443.3

Effects of Longitudinal Reinforcement Ratio on Flexural Capacity of One-Way Slab of UHPC Waffle Bridge Deck

  • 摘要:

    为研究超高性能混凝土(UHPC)华夫桥面单向板中纵筋率对其抗弯承载力的影响,利用等效宽度的原理对其进行简化,设计制作了6根不同纵筋率的足尺T梁模型. 首先,通过加载试验分别对UHPC的基本力学性能和T型截面UHPC梁的抗弯性能和破坏模式进行研究;其次,根据材料性能试验结果,提出UHPC抗拉与抗压的本构模型,并通过截面分析推导T型截面UHPC梁的极限抗弯承载力计算公式;最后,基于既有研究结果,对所提出的T形截面UHPC梁极限抗弯承载力计算公式进行适用性验证. 研究结果表明:由于UHPC具有优异的抗拉强度和拉伸韧性,尽管减小纵筋率会降低T形截面UHPC梁的极限抗弯承载力和延性,但不会改变构件的破坏形式,即T形截面UHPC梁在纵筋率较少甚至不配筋的情况下依然具备延性破坏的特征;根据截面分析推导结果,受拉侧UHPC极限抗拉强度变化系数与纵筋率成正比关系,纵筋率的增大可以更加显著地发挥UHPC的抗拉作用;所提出的公式具有良好的适用性.

     

  • 图 1  UHPC拉伸试验

    Figure 1.  UHPC tensile tests

    图 2  试件截面

    Figure 2.  Cross section of specimens

    图 3  试件尺寸及配筋

    Figure 3.  Dimension and reinforcement of specimens

    图 4  试验加载装置

    Figure 4.  Experimental loading setup

    图 5  加载后的裂缝分布

    Figure 5.  Crack distribution after loading

    图 6  荷载-跨中挠度曲线

    Figure 6.  Load-midspan deflection curves

    图 7  受弯承载力极限状态

    Figure 7.  Ultimate state of flexural capacity

    图 8  极限抗弯承载力

    Figure 8.  Ultimate flexural capacity

    图 9  提出公式的适用性分析

    Figure 9.  Applicability analysis of proposed equations

    表  1  钢纤维特性

    Table  1.   Properties of steel fibers

    参数长度/mm直径/mm抗拉强度/MPa形状表面
    取值130.2≥2 850直线光滑
    下载: 导出CSV

    表  2  UHPC配合比

    Table  2.   Mix proportion of UHPC

    名称预拌料钢纤维
    配比1.00011.1611.036
    下载: 导出CSV

    表  3  UHPC的单轴拉伸性能

    Table  3.   Uniaxial tensile behavior of UHPC

    参数初裂强度/
    MPa
    初裂
    应变
    极限强度/
    MPa
    极限强度
    对应应变
    取值4.140.00018.420.0071
    下载: 导出CSV

    表  4  钢筋的抗拉力学性能

    Table  4.   Tensile properties of steel bars

    直径/mm屈服强度/MPa极限强度/MPa表面
    6529.7537.0螺纹
    10519.9623.6
    12479.2662.2
    16429.9618.6
    20415.5604.1
    22470.5651.0
    下载: 导出CSV

    表  5  试件设计参数

    Table  5.   Design parameters of specimens

    试件编号底部纵筋纵筋率$\mathop \rho \nolimits_1 $/%顶部纵筋
    UT-0005$\phi $10@100
    UT-061D60.15
    UT-121D120.61
    UT-161D161.08
    UT-201D201.69
    UT-221D222.04
    下载: 导出CSV

    表  6  T梁试验结果

    Table  6.   Results of T-shaped beam tests kN

    试件编号开裂荷载屈服荷载峰值荷载
    UT-0017.022.6
    UT-0614.014.726.4
    UT-1219.029.150.5
    UT-1623.038.166.7
    UT-2027.044.391.8
    UT-2243.063.4112.7
    下载: 导出CSV

    表  7  T梁受弯承载力计算值与试验值对比

    Table  7.   Comparison between calculated and experimental flexural capacity of T-shaped UHPC beams

    试件
    编号
    xe/mmkMu_exp/
    (kN•m)
    Mu_cal/
    (kN•m)
    Mu_cal/
    Mu_exp
    UT-006.91−0.1110.179.780.96
    UT-067.28−0.1211.8812.921.09
    UT-128.480.2622.7321.840.96
    UT-169.750.5430.0229.971.00
    UT-2011.600.9141.3141.181.00
    UT-2213.051.1250.7251.121.01
    下载: 导出CSV

    表  8  既有文献的公式验证

    Table  8.   Validation of proposed equations in previous studies

    来源试件xe
    /mm
    kMu_exp/
    (kN•m)
    Mu_cal/
    (kN•m)
    Mu_cal/ Mu_exp
    文献[23]B-S65-1613.490.3756.1653.190.95
    B-S65-2016.440.6487.2179.980.92
    文献[24]T-130.380.95172.94160.610.93
    T-244.231.64236.43238.171.01
    T-348.762.04286.47256.840.90
    T-459.732.54297.32340.771.15
    T-548.181.64281.61275.650.98
    文献[25]T120.490.62105.12108.221.03
    T238.762.07179.42192.621.07
    下载: 导出CSV
  • [1] 聂建国,陶慕轩,吴丽丽,等. 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报,2012,45(6): 110-122.

    NIE Jianguo, TAO Muxuan, WU Lili, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-122.
    [2] 邓万栋. 钢混组合梁桥病害成因及其加固措施探讨[J]. 人民交通,2019,368(3): 88,90.
    [3] BASTIEN-MASSE M, DENARIÉ E, BRÜHWILER E. Effect of fiber orientation on the in-plane tensile response of UHPFRC reinforcement layers[J]. Cement and Concrete Composites, 2016, 67: 111-125. doi: 10.1016/j.cemconcomp.2016.01.001
    [4] NIWA J. Recommendations for design and construction of ultra high strength fiber reinforced concrete structures[M]. Tokyo: Japan Society of Civil Engineers, 2006.
    [5] BACHE H H. Compact reinforced composite basic principles[R]. Denmark: Aalborg Portland, 1987.
    [6] LEE M G, WANG Y C, CHIU C T. A preliminary study of reactive powder concrete as a new repair material[J]. Construction and Building Materials, 2007, 21(1): 182-189. doi: 10.1016/j.conbuildmat.2005.06.024
    [7] 邵旭东,曹君辉,易笃韬,等. 正交异性钢板-薄层RPC组合桥面基本性能研究[J]. 中国公路学报,2012,25(2): 40-45.

    SHAO Xudong, CAO Junhui, YI Dutao, et al. Research on basic performance of composite bridge deck system with orthotropic steel deck and thin RPC layer[J]. China Journal of Highway and Transport, 2012, 25(2): 40-45.
    [8] TOUTLEMONDE F, RESPLENDINO J, SORELLI L, et al. Innovative design of ultra high-performance fiber reinforced concrete ribbed slab: experimental validation and preliminary detailed analyses[J]. Special Publication, 2005, 228: 1187-1206.
    [9] GARCIA H M. Analysis of an ultra-high performance concrete two-way ribbed bridge deck slab[R]. Washington D. C.: Federal Highway Administration, 2007.
    [10] AALETI S, PETERSEN B, SRITHARAN S. Design guide for precast UHPC waffle deck panel system, including connections[R]. Washington D. C.: Federal Highway Administration, 2013.
    [11] AALETI S, HONARVAR E, SRITHARAN S. Structural characterization of UHPC waffle bridge deck and coonections[R]. Washington D. C.: Federal Highway Administration, 2014.
    [12] GHASEMI S, ZOHREVAND P, MIRMIRAN A, et al. A super lightweight UHPC-HSS deck panel for movable bridges[J]. Engineering Structures, 2016, 113: 186-193. doi: 10.1016/j.engstruct.2016.01.046
    [13] GHASEMI S, MIRMIRAN A, XIAO Y L, et al. Novel UHPC-CFRP waffle deck panel system for accelerated bridge construction[J]. Journal of Composites for Construction, 2016, 20(1): 1-10.
    [14] BAGHI H, MENKULASI F, PARKER J, et al. Development of a high-performance concrete deck for Louisiana’s movable bridges: numerical study[J]. Journal of Bridge Engineering, 2017, 22(7): 1-18.
    [15] HADI B, FATMIR M, CARLOS M, et al. Four high performance nonproprietary concrete deck configurations for movable bridges[J]. Engineering Structures, 2018, 168: 559-575. doi: 10.1016/j.engstruct.2018.05.016
    [16] 邵旭东, 胡建华. 钢-超高性能混凝土轻型组合桥梁结构[M]. 北京: 人民交通出版社, 2015.
    [17] 邵旭东,吴佳佳,刘榕,等. 钢-UHPC轻型组合桥梁结构华夫桥面板的基本性能[J]. 中国公路学报,2017,30(3): 218-225,245.

    SHAO Xudong, WU Jiajia, LIU Rong, et al. Basic performance of waffle deck panel of lightweight steel-UHPC composite bridge[J]. China Journal of Highway and Transport, 2017, 30(3): 218-225,245.
    [18] 邓舒文,邵旭东,晏班夫,等. 全预制快速架设钢-UHPC轻型组合城市桥梁[J]. 中国公路学报,2017,30(3): 159-166.

    DENG Shuwen, SHAO Xudong, YAN Banfu, et al. Lightweight steel-UHPC composite bridge with overall prefabrication and fast erection in city[J]. China Journal of Highway and Transport, 2017, 30(3): 159-166.
    [19] 张清华,韩少辉,贾东林,等. 新型装配式UHPC华夫型上翼缘组合梁受力性能[J]. 西南交通大学学报,2019,54(3): 445-452.

    ZHANG Qinghua, HAN Shaohui, JIA Donglin, et al. Mechanical performance of novel prefabricated composite girder with top flange of ultra hight performance concrete waffle deck panel[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 445-452.
    [20] 朱劲松,王永光,郭晓宇,等. 钢-UHPC华夫板组合梁抗剪性能试验研究[J]. 中国公路学报,2020,33(11): 169-181.

    ZHU Jinsong, WANG Yongguang, GUO Xiaoyu, et al. Experimental study on shear behaviors of steel-UHPC composite beams with waffle slab[J]. China Journal of Highway and Transport, 2020, 33(11): 169-181.
    [21] 邵旭东,李玉祺,廖子南,等. UHPC华夫桥面板抗弯性能试验及有限元分析[J]. 长安大学学报(自然科学版),2018,38(3): 52-63.

    SHAO Xudong, LI Yuqi, LIAO Zinan, et al. Test and finite element analysis on bending performance of UHPC Waffle deck panel[J]. Journal of Chang’an University (Natural Science Edition), 2018, 38(3): 52-63.
    [22] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
    [23] QIU M H, SHAO X D, WILLE K, et al. Experimental investigation on flexural behavior of reinforced ultra high performance concrete low-profile T-beams[J]. International Journal of Concrete Structures and Materials, 2020, 14(1): 1-20. doi: 10.1186/s40069-019-0376-6
    [24] 邓宗才,王义超,肖锐,等. 高强钢筋UHPC梁抗弯性能试验研究与理论分析[J]. 应用基础与工程科学学报,2015,23(1): 68-78.

    DENG Zongcai, WANG Yichao, XIAO Rui, et al. Flexural test and theoretical analysis of UHPC beams with high strength rebars[J]. Journal of Basic Science and Engineering, 2015, 23(1): 68-78.
    [25] 刘超,黄钰豪,马汝杰,等. 高应变强化超高性能混凝土T形梁抗弯承载力[J]. 同济大学学报(自然科学版),2018,46(6): 744-750.

    LIU Chao, HUANG Yuhao, MA Rujie, et al. Calculation method for flexural capacity of high strain-hardening UHPC T-beams[J]. Journal of Tongji University (Natural Science), 2018, 46(6): 744-750.
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  124
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2022-03-02
  • 网络出版日期:  2023-06-28
  • 刊出日期:  2022-03-24

目录

    /

    返回文章
    返回