Contactless Power Supply Technology for Maglev Trains
-
摘要:
针对高速磁浮列车在狭窄空间内高经济性、高可靠性车载供电需求,在耦合磁路、电气性能仿真、设计优化基础上,提出一种发射端多匝线圈且无磁芯、拾取端类似双U型耦合磁路结构的非接触供电系统(inductive power supply,IPS),该系统采用了理论设计、仿真分析以及试验验证相结合的研究方法. 首先,根据高速磁浮列车供电需求,通过理论计算确定各设备主要参数,完成IPS系统设计方案;然后,进行耦合磁路设计及仿真分析:利用Maxwell软件对多种耦合磁路进行3D仿真分析,确定耦合磁路最优设计方案,开展三维电磁仿真得到拾取装置与地面发射线圈间互感;紧接着,进行电气性能仿真分析:利用Matlab软件建立IPS系统电气仿真模型,仿真IPS系统传输功率及效率,根据供电需求确定补偿装置、地面逆变电源及DC/DC参数;最后,研制完成供电功率150 kW磁场耦合非接触供电系统,并部署于磁浮样车试验线,完成了现场EMC (electromagnetic magnetic compatibility)性能、电气性能测试验证. 验证结果表明:传输功率超过150 kW,效率92%,达到项目预期目标.
Abstract:Aiming at the on-board power supply requirements of high-speed maglev trains in economy and reliability in narrow spaces, utilizing the coupling magnetic circuit, electrical performance simulation, and design optimization, a new type of transmitter, a non-contact power supply system (inductive power supply, IPS), is proposed, which features a multi-turn coil at the transmitting end, no magnetic core, and pickup ends similar to a double U-shaped coupled magnetic. First, according to the power supply requirements of high-speed maglev trains, the main parameters of each device are determined through theoretical calculations, and the IPS system design plan is completed. Then design and simulation analysis of the coupling magnetic circuit is conducted, including the use of Maxwell software to perform 3D simulation analysis on various coupling magnetic circuits, determining the optimal design scheme of the coupling magnetic circuit, and three-dimensional electromagnetic simulation to obtain the mutual inductance between the pickup device and the ground transmitting coil. Next, electrical performance simulation analysis is conducted with the use of Matlab software to establish an electrical simulation model of the IPS system, simulate the transmission power and efficiency of the IPS system, and determine the compensation device, ground inverter power supply and DC/DC parameters according to the power supply requirements. Finally, the 150 kW magnetic-field coupling contactless power supply system was developed and deployed on the maglev prototype test line. The on-site EMC (electromagnetic magnetic compatibility) performance and electrical performance test verification was completed. The transmission power exceeds 150 kW and the efficiency is 92%, achieving the expected objectives of the project
-
表 1 不同补偿拓扑结构对比
Table 1. Comparison of different compensation topologies
项目 串联结构 并联结构 LCL结构 电源 电压 电流 电压 输出 矩形电压、正弦电流 矩形电流、正弦电压 矩形电压、正弦电流 逆变器 承受全部谐振电流 承受部分谐振电流 受部分谐振电流 空载时 谐振电流很大 谐振电压很大力 谐振电流较小 承受应力 只需承受输入电压大小应力 需承受输入电流大小应力 只需承受输入电压大小应力 表 2 互感计算结果
Table 2. Calculation results of mutual inductance
名 称 符号 值/μH 发射端线圈 A 与拾取端
线圈 2 之间的互电感MA,2 14.53 发射端线圈 B 与拾取端
线圈 2 之间的互电感MB,2 14.31 为发射端线圈 C 与拾取端
线圈 2 之间的互电感MC,2 13.05 发射线圈 A、B 间互电感 MA,B 1.73 发射线圈 A、C 间互电感 MA,C 1.19 发射线圈 B、C 间互电感 MB,C 1.57 表 3 工况1主要电气参数
Table 3. Main electrical parameters for operating condition 1
拾取电容电压/V 发射线缆电压/V 发射线圈电流/A 负载阻值/Ω 负载电压/V 负载电流/A 负载功率/kW 2130.0 684.9 197.5 38 441.3 11.6 5.1 表 4 拾取装置输出电压及电流
Table 4. Output voltage and current of pickup device
发射单元 测试位置 开路电压/V 负载电压/V 负载电流/A 拾取功率/kW 第 1 单元 靠近 FV 353.9 344.4 18.3 6.303 中间位置 345.4 333.5 17.9 5.970 远离 FV 352.1 337.1 18.3 6.169 第 2 单元 靠近 FV 348.7 338.9 18.1 6.134 中间位置 345.4 328.9 17.8 5.901 远离 FV 355.6 349.0 18.4 6.422 -
[1] 杨民生. 非接触感应耦合电能传输与控制技术及其应用研究[D]. 长沙: 湖南大学, 2012. [2] 文艳晖,杨鑫,龙志强,等. 非接触供电技术及其在轨道交通上的应用[J]. 机车电传动,2016(6): 14-20.WEN Yanhui, YANG Xin, LONG Zhiqiang, et al. Contactless power supply technology and its application in rail transport[J]. Electric Drive for Locomotives, 2016(6): 14-20. [3] COVIC G A, BOYS J T. Modern trends in inductive power transfer for transportation applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1(1): 28-41. doi: 10.1109/JESTPE.2013.2264473 [4] DICKINSON R M. Performance of a high-power, 2.388-GHz receiving array in wireless power transmission over 1.54 km[C]//1976 IEEE-MTT-S International Microwave Symposium. Cherry Hill: IEEE, 1976: 139-141. [5] CHOI S Y, GU B W, JEONG S Y, et al. Advances in wireless power transfer systems for roadway-powered electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 18-36. doi: 10.1109/JESTPE.2014.2343674 [6] PRIMOVE Communication. Official website of PRIMOVE [EB/OL]. [2015-10-08]. http://primove.bombardier.com/application/light-rail. [7] KIM J H, LEE B S, LEE J H, et al. Development of 1 MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6242-6250. doi: 10.1109/TIE.2015.2417122 [8] 张颖. 高速磁浮列车无接触供电中的电能耦合优化技术研究[D]. 北京: 中国科学院电工研究所, 2012: 65-66. [9] 孙跃,陈国东,戴欣,等. 非接触电能传输系统恒流控制策略[J]. 重庆大学学报,2008,31(7): 766-769. doi: 10.11835/j.issn.1000-582X.2008.07.012SUN Yue, CHEN Guodong, DAI Xin, et al. A constant current control method for contactless power transmission systems[J]. Journal of Chongqing University, 2008, 31(7): 766-769. doi: 10.11835/j.issn.1000-582X.2008.07.012 [10] LI Y, MAI R K, YANG M K, et al. Cascaded multi-level inverter based IPT systems for high power applications[J]. Journal of Power Electronics, 2015, 15(6): 1508-1516. doi: 10.6113/JPE.2015.15.6.1508 [11] 麦瑞坤,陆立文,李勇,等. 一种采用最小电压与最大电流跟踪的IPT系统动态调谐方法[J]. 电工技术学报,2015,30(19): 32-38. doi: 10.3969/j.issn.1000-6753.2015.19.006MAI Ruikun, LU Liwen, LI Yong, et al. Dynamic resonant compensation approach based on minimum voltage and maximum current tracking for IPT system[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 32-38. doi: 10.3969/j.issn.1000-6753.2015.19.006 [12] 黄立敏,李砚玲,麦瑞坤,等. 感应电能传输系统电磁机构带通滤波特性建模分析[J]. 电工技术学报,2015,30(增刊1): 138-142.HUANG Limin, LI Yanling, MAI Ruikun, et al. Band-pass filter modeling and analysis for electromagnetic mechanism in inductive power transfer system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 138-142. [13] LIU C, HU A P, WANG B, et al. A capacitively coupled contactless matrix charging platform with soft switched transformer control[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 249-260. doi: 10.1109/TIE.2011.2172174