• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

电动磁浮列车用直线谐波发电机发电特性计算

吕刚 郭曦临

吕刚, 郭曦临. 电动磁浮列车用直线谐波发电机发电特性计算[J]. 西南交通大学学报, 2023, 58(4): 783-791. doi: 10.3969/j.issn.0258-2724.20210892
引用本文: 吕刚, 郭曦临. 电动磁浮列车用直线谐波发电机发电特性计算[J]. 西南交通大学学报, 2023, 58(4): 783-791. doi: 10.3969/j.issn.0258-2724.20210892
LYU Gang, GUO Xilin. Calculation of Power Generation Characteristics of Linear Harmonic Generator for Electrodynamic Suspension Maglev Train[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 783-791. doi: 10.3969/j.issn.0258-2724.20210892
Citation: LYU Gang, GUO Xilin. Calculation of Power Generation Characteristics of Linear Harmonic Generator for Electrodynamic Suspension Maglev Train[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 783-791. doi: 10.3969/j.issn.0258-2724.20210892

电动磁浮列车用直线谐波发电机发电特性计算

doi: 10.3969/j.issn.0258-2724.20210892
基金项目: 国家自然科学基金(52077003,51777009)
详细信息
    作者简介:

    吕刚(1976—),男,教授,博士,研究方向为直线电机及其控制,E-mail:ganglv@bjtu.edu.cn

  • 中图分类号: U266.4

Calculation of Power Generation Characteristics of Linear Harmonic Generator for Electrodynamic Suspension Maglev Train

  • 摘要:

    为研究高速磁悬浮车辆直线谐波发电机的发电特性,首先,基于空间谐波法,提出超导线圈的磁动势分布模型,并推导超导线圈在三维空间内磁感应强度分布公式;其次,基于悬浮线圈与超导线圈间的电磁耦合关系,计算悬浮线圈电流的感应磁场,分析得知悬浮线圈五次谐波磁场用于感应集电;然后,将悬浮线圈五次谐波磁场作为集电线圈的激励,推导集电线圈感应电动势的解析式;最后,以日本山梨线MLX01型磁浮列车为工程背景,利用数值解析值、有限元仿真和日本山梨线实测数据进行了对比分析. 研究结果表明:超导线圈磁感应强度、感应电动势和集电功率的解析值与有限元仿真、实测数据的相对误差均在10%以内,验证了磁动势分布模型和解析模型的有效性;列车速度大于100 km/h时,悬浮线圈电流及其感应磁场趋于饱和;集电线圈感应电动势与列车运行速度近似呈线性关系,集电功率与速度呈二次非线性关系;列车速度500 km/h时,集电功率为43.3 kW;列车速度在380 km/h时达到25.0 kW的目标集电功率,保证了磁悬浮车辆车载供电的可靠性.

     

  • 图 1  直线谐波发电机结构与安装位置

    Figure 1.  Linear harmonic generator structure and installation location

    图 2  直线谐波发电机的线圈排布

    Figure 2.  Coil arrangement of linear harmonic generator

    图 3  超导线圈磁动势分布模型

    Figure 3.  Magnetomotive force distribution model of superconducting coil

    图 4  yOz平面内线圈间位置关系

    Figure 4.  Positional relationship between coils in the yOz plane

    图 5  悬浮线圈电流谐波分析

    Figure 5.  Current harmonic analysis of suspension coil

    图 6  悬浮线圈电流产生的谐波磁场

    Figure 6.  Harmonic magnetic field generated by suspension coil current

    图 7  利用ANSYS 2019 R2建立的三维模型

    Figure 7.  3D model created with ANSYS 2019 R2

    图 8  试验装置

    Figure 8.  Test device

    图 9  超导线圈磁感应强度

    Figure 9.  Magnetic induction intensity of superconducting coil

    图 10  悬浮线圈电流

    Figure 10.  Suspension coil current

    图 11  感应电动势解析计算与有限元仿真对比

    Figure 11.  Comparison between analytical calculation and finite element simulation of induced electromotive force

    图 12  感应电动势解析计算与试验数据对比

    Figure 12.  Comparison between analytical calculation and experimental data of induced electromotive force

    图 13  集电功率解析计算与有限元、试验对比

    Figure 13.  Comparison of collector powers between analytical calculation, finite element simulation and experimental data

    图 14  悬浮线圈电流及其磁感应强度

    Figure 14.  Suspension coil current and its magnetic induction

    图 15  集电线圈感应电动势

    Figure 15.  Induced electromotive force of collector coil

    表  1  直线谐波发电机基本参数

    Table  1.   Parameters of linear harmonic generator

    线圈参数数值
    集电线圈a2R/mm200
    a2S/mm245
    a2T/mm245
    b2U/mm435
    b2B/mm245
    与超导线圈间距/mm75
    悬浮线圈a1/mm350
    b1/mm340
    N1/匝24
    τ1/mm450
    与超导线圈间距/mm185
    超导线圈a0/mm1070
    b0/mm500
    Ns/匝1400
    τ/mm1350
    Is/A500
    下载: 导出CSV
  • [1] 张昆仑. 高速磁浮铁路技术[M]. 北京: 中国铁道出版社, 2021: 1-17.
    [2] 邓自刚,刘宗鑫,李海涛,等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报,2022,57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001

    DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-474,530. doi: 10.3969/j.issn.0258-2724.20220001
    [3] 吴冬华,冯程程,余进. 磁浮列车非接触式供电技术[J]. 西南交通大学学报,2022,57(3): 522-530.

    WU Donghua, FENG Chengcheng, YU Jin. Contactless power supply technology for maglev trains[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 522-530.
    [4] 王一宇,蔡尧,宋旭亮,等. 零磁通式电动悬浮等效模拟系统的特性分析与实验[J]. 电工技术学报,2021,36(8): 1628-1635.

    WANG Yiyu, CAI Yao, SONG Xuliang, et al. Characteristic analysis and experiment of the equivalent simulation system for null-flux electrodynamic suspension[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1628-1635.
    [5] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925. doi: 10.1109/TMAG.2006.875842
    [6] 胡道宇,冯馨月,张志华. 超导电动悬浮系统阻尼特性研究[J]. 中国电机工程学报,2021,41(13): 4679-4688.

    HU Daoyu, FENG Xinyue, ZHANG Zhihua. Study on the damping characteristics of superconducting electrodynamic suspension system[J]. Proceedings of The CSEE, 2021, 41(13): 4679-4688.
    [7] 王志涛,蔡尧,龚天勇,等. 基于场–路–运动耦合模型的超导电动悬浮列车特性研究[J]. 中国电机工程学报,2019,39(4): 1162-1171.

    WANG Zhitao, CAI Yao, GONG Tianyong, et al. Characteristic studies of the superconducting electrodynamic suspension train with a field-circuit-motion coupled model[J]. Proceedings of the CSEE, 2019, 39(4): 1162-1171.
    [8] 陈敏,周邓燕,徐德鸿. 注入高次谐波电流的磁悬浮列车非接触供电方法[J]. 中国电机工程学报,2005,25(6): 104-108.

    CHEN Min, ZHOU Dengyan, XU Dehong. Contactless power supply of maglev using harmonic injection method[J]. Proceedings of the CSEE, 2005, 25(6): 104-108.
    [9] ANDRIOLLO M, MARTINELLI G, MORINI A, et al. Optimization of the on-board linear generator in EMS-maglev trains[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4224-4226. doi: 10.1109/20.619717
    [10] 刘志浩. 电磁式高速磁浮系统直线谐波发电机特性分析[D]. 北京: 北京交通大学, 2021.
    [11] 郭亮,卢琴芬,叶云岳. 磁浮列车用直线发电机感应电动势的分析计算[J]. 电工技术学报,2005,20(11): 1-5.

    GUO Liang, LU Qinfen, YE Yunyue. Analysis and calculation of the linear generator EMF in maglev[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 1-5.
    [12] 刘慧娟,张奕黄. 磁悬浮列车中直线发电机电枢绕组电阻和电感的计算[J]. 北方交通大学学报,2003,27(4): 94-96.

    LIU Huijuan, ZHANG Yihuang. Calculation of armature resistance and inductance for linear generator used in magnetic levitation vehicle[J]. Journal of Northern Jiaotong University, 2003, 27(4): 94-96.
    [13] 吴寒玉. 高速磁浮列车多运行姿态下车载直线发电机的性能分析[D]. 北京: 北京交通大学, 2020.
    [14] 高雨晴. 多姿态工况下高速磁浮系统直线发电机特性分析[D]. 北京: 北京交通大学, 2021.
    [15] KASHIWAGI T, MURAI T, YAMAMOTO T, et al. Control of the output power and power factor in a converter of a linear generator for the maglev system[J]. IEEJ Transactions on Industry Applications, 2004, 124(10): 1029-1035. doi: 10.1541/ieejias.124.1029
    [16] MURAI T, SAKAMOTO Y. High power factor converter control by instantaneous single-phase current for a maglev system linear generator[J]. IEEJ Transactions on Industry Applications, 2006, 126(2): 186-191. doi: 10.1541/ieejias.126.186
    [17] FUJIWARA S, MURAI T, HASEGAWA H. Magnetic damping method of EDS system using power collection coil[J]. IEEJ Transactions on Industry Applications, 1999, 119(2): 254-259. doi: 10.1541/ieejias.119.254
    [18] MURAI T, HASEGAWA H, YAMAMOTO T, et al. Active magnetic damper using linear generator[J]. IEEJ Transactions on Industry Applications, 1999, 119(11): 1371-1376. doi: 10.1541/ieejias.119.1371
    [19] SAKAMOTO Y, MURAI T, KASHIWAGI T, et al. The development of linear generator system combined with magnetic damping function[J]. IEEJ Transactions on Industry Applications, 2006, 126(2): 192-198. doi: 10.1541/ieejias.126.192
    [20] MURAI T, SAKAMOTO Y. Sensor-less combined vertical and lateral magnetic damper by using linear generator[J]. IEEJ Transactions on Industry Applications, 2006, 126(3): 269-275. doi: 10.1541/ieejias.126.269
    [21] TERAI M, IGARASHI M, KUSADA S, et al. The R&D project of HTS magnets for the superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1124-1129. doi: 10.1109/TASC.2006.871342
    [22] YAMAMOTO T, MURAI T, HASEGAWA H, et al. Development of distributed-type linear generator with damping control[J]. Quarterly Report of RTRI, 2000, 41(2): 83-88. doi: 10.2219/rtriqr.41.83
    [23] HASEGAWA H, MATSUE H. Development of a linear generator integrated into an existing superconducting magnet of a yamanashi maglev vehicle[J]. Quarterly Report of RTRI, 2004, 45(1): 21-25. doi: 10.2219/rtriqr.45.21
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  1265
  • HTML全文浏览量:  136
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2022-05-10
  • 网络出版日期:  2023-01-07
  • 刊出日期:  2022-05-11

目录

    /

    返回文章
    返回