• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

轴-径向混合磁轴承动态特性及控制研究

肖玲 赵晨曦 窦经纬 程文杰 郑善栋

肖玲, 赵晨曦, 窦经纬, 程文杰, 郑善栋. 轴-径向混合磁轴承动态特性及控制研究[J]. 西南交通大学学报, 2022, 57(3): 640-647, 656. doi: 10.3969/j.issn.0258-2724.20210883
引用本文: 肖玲, 赵晨曦, 窦经纬, 程文杰, 郑善栋. 轴-径向混合磁轴承动态特性及控制研究[J]. 西南交通大学学报, 2022, 57(3): 640-647, 656. doi: 10.3969/j.issn.0258-2724.20210883
XIAO Ling, ZHAO Chenxi, DOU Jingwei, CHENG Wenjie, ZHENG Shandong. Research on Dynamic Characteristics and Control of Axial-Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 640-647, 656. doi: 10.3969/j.issn.0258-2724.20210883
Citation: XIAO Ling, ZHAO Chenxi, DOU Jingwei, CHENG Wenjie, ZHENG Shandong. Research on Dynamic Characteristics and Control of Axial-Radial Hybrid Magnetic Bearing[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 640-647, 656. doi: 10.3969/j.issn.0258-2724.20210883

轴-径向混合磁轴承动态特性及控制研究

doi: 10.3969/j.issn.0258-2724.20210883
基金项目: 国家自然科学基金(11502196, 51705413);陕西省自然科学基金(2020JM-531, 2022JM-194)
详细信息
    作者简介:

    肖玲(1983—),女,副教授,博士,研究方向为电磁轴承、高速电机转子、软磁复合材料,E-mail:xiaoling@xust.edu.cn

  • 中图分类号: TH133.3

Research on Dynamic Characteristics and Control of Axial-Radial Hybrid Magnetic Bearing

  • 摘要:

    为了减小三自由度轴-径向混合磁轴承(ARHMB)的涡流损耗并增加轴向磁力,提出轴向采用软磁复合材料(SMCs)制备的推力轴承,在推力盘与转子的气隙处引入Halbach阵列以增强轴向气隙磁密,径向采用叠片结构. 首先,基于动态磁通分布及等效磁路法,建立综合考虑涡流、漏磁及交叉耦合效应的等效磁阻模型;其次,对比分析了材料类型及交叉耦合效应对等效磁阻频率响应、动态刚度的影响;最后,采用计及涡流、漏磁及交叉耦合效应不完全微分PID控制对ARHMB进行研究. 研究结果表明:SMCs制备的ARHMB相比碳钢材料可以提供更大、更稳定的磁力以及更大的工作带宽,在高频条件下具有更好的动态特性;考虑交叉耦合效应时,SMCs制备的ARHMB动态特性在高频时变化率较大,不可忽略;对于低带宽工作的碳钢轴承,交叉耦合效应不明显;电磁轴承系统响应速度很快、超调量小、稳态误差近似为0,具有良好的控制特性.

     

  • 图 1  ARHMB三维结构

    Figure 1.  ARHMB 3D structure

    图 2  ARHMB轴径向剖面结构及参数

    Figure 2.  ARHMB axail radial section structure and parameters

    图 3  ARHMB磁通分布

    Figure 3.  ARHMB flux distribution

    图 4  偏置磁通磁路

    Figure 4.  Equivalent magnetic circuit of bias flux

    图 5  径向磁轴承

    Figure 5.  Radial magnetic bearing

    图 6  径向控制磁通等效磁路

    Figure 6.  Equivalent magnetic circuit of radial control flux path

    图 7  推力磁轴承

    Figure 7.  Thrust magnetic bearing

    图 8  轴向控制磁通等效磁路

    Figure 8.  Equivalent magnetic circuit of the axial control flux

    图 9  轴向等效磁阻频率响应

    Figure 9.  Frequency response of axial equivalent reluctance

    图 10  径向等效磁阻频率响应

    Figure 10.  Frequency response of radial equivalent reluctance

    图 11  轴向力-电流刚度频率响应

    Figure 11.  Frequency response of axial force-current stiffness

    图 12  轴向力-位移刚度频率响应

    Figure 12.  Frequency response of axial force-displacement stiffness

    图 13  径向刚度频率响应

    Figure 13.  Frequency response of radial stiffness

    图 14  不完全微分形式的PID控制

    Figure 14.  Non-differential PID control

    图 15  不完全微分PID控制阶跃响应

    Figure 15.  Step response of incomplete differential PID control

    图 16  不完全微分形式的PID控制误差变化曲线

    Figure 16.  Error curve of PID control in incomplete differential form

    表  1  ARHMB结构参数

    Table  1.   ARHMB structure parameters mm

    参数数值参数数值
    轴向磁极
    宽度 x
    6 转子外径
    宽度 y
    6
    轴向定子腔
    宽度 b
    20 径向磁极轴向
    宽度 c
    25
    径向磁极径向
    宽度 l
    9 气隙宽度 g 0.4
    转子半径 d1 15 轴向磁极
    内径 d2
    18
    转子外径 d3 24 径向磁极
    外径 d4
    28
    轴向定子
    内径 d5
    58 轴向定子内外径
    间距 d6
    7
    径向定子
    外径 d7
    58 导磁环厚度 d8 6
    下载: 导出CSV
  • [1] 崔恒斌,周瑾,董继勇,等. 磁悬浮旋转机械振动稳定性实例研究[J]. 浙江大学学报(工学版),2018,52(4): 635-640,686. doi: 10.3785/j.issn.1008-973X.2018.04.004

    CUI Hengbin, ZHOU Jin, DONG Jiyong, et al. Case study on vibration stability of rotating machinery equipped with active magnetic bearings[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(4): 635-640,686. doi: 10.3785/j.issn.1008-973X.2018.04.004
    [2] 林子豪,胡业发,冉少林,等. 3自由度混合磁轴承支承特性及仿真分析[J]. 机械设计与研究,2019,35(5): 32-35,40.

    LIN Zihao, HU Yefa, RAN Shaolin, et al. Simulation study on supporting characteristics of three-DOF hybrid magnetic bearings[J]. Machine Design & Research, 2019, 35(5): 32-35,40.
    [3] ZHONG Y L, WU L J, HUANG X Y, et al. Modeling and design of a 3-DOF magnetic bearing with toroidal radial control coils[J]. IEEE Transactions on Magnetics, 2019, 55(7): 1-7.
    [4] XIAO L, HE X W, CHENG W J, et al. Structural optimization and dynamic characteristics of the new type 3-degrees of freedom axial and radial hybrid magnetic bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021: 09544062211052826.1- 09544062211052826.14.
    [5] LE Y, WANG K. Design and optimization method of magnetic bearing for high-speed motor considering eddy current effects[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(4): 2061-2072. doi: 10.1109/TMECH.2016.2569822
    [6] REN X J, LE Y, SUN J J, et al. Magnetic flux leakage modelling and optimisation of a CRAHMB for DC motor[J]. IET Electric Power Applications, 2017, 11(2): 212-221. doi: 10.1049/iet-epa.2016.0259
    [7] REN X, FENG M,CHEN S,et al. The cross-coupling problem caused by the structure of a combined radial-axial magnetic bearing for DC motors[J]. International Journal of Applied Electromagnetics and Mechanics, 2020, 62(1): 173-189.
    [8] ZHONG Y L, WU L J, FANG Y T, et al. Investigation of cross-coupling effect and its restraining methods of a 3-DOF hybrid magnetic bearing[J]. COMPEL:the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2018, 37(6): 2195-2210. doi: 10.1108/COMPEL-01-2018-0037
    [9] FENG S, AN Y, WANG Z X, et al. Preparation and magnetic properties of Fe@SiO2 Soft magnetic composites[J]. Materials Science Forum, 2020, 993: 638-645. doi: 10.4028/www.scientific.net/MSF.993.638
    [10] XIAO L, HOU T Y, LI M, et al. Dynamic performances of a magnetic thrust bearing based on new soft magnetic composites[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(10): 3388-3399. doi: 10.1177/0954406218813587
    [11] HAN B C, XU Q J, ZHENG S Q. Integrated radial/thrust magnetic bearing without thrust disk for a high-speed driving system[J]. IET Electric Power Applications, 2016, 10(4): 276-283. doi: 10.1049/iet-epa.2015.0335
    [12] ZHU L. Non-laminated magnetic actuators: Modeling and performance limitations[D]. Virginia: University of Virginia, 2005
    [13] 邴守东,李国林. 不完全微分PID控制算法研究与仿真实验[J]. 电子工业专用设备,2013,42(1): 46-50. doi: 10.3969/j.issn.1004-4507.2013.01.011

    BING Shoudong, LI Guolin. Incomplete derivative PID control algorithm and simulation experiment[J]. Equipment for Electronic Products Manufacturing, 2013, 42(1): 46-50. doi: 10.3969/j.issn.1004-4507.2013.01.011
    [14] 王忠博. 主动电磁轴承-刚性转子系统振动主动控制[D]. 杭州: 浙江大学, 2018.
    [15] LIN F J, HUANG M S, CHEN S Y. Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system[J]. IET Control Theory & Applications, 2011, 5(11): 1287-1303.
    [16] LIU C, LIU G. Equivalent damping control of radial twist motion for permanent magnetic bearings based on radial position variation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6417-6427. doi: 10.1109/TIE.2015.2416681
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  167
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 修回日期:  2022-03-02
  • 刊出日期:  2022-03-11

目录

    /

    返回文章
    返回