Modeling and Vibration Analysis of Semi-active Seat Suspension with Magnetorheological Damper
-
摘要:
磁流变阻尼器力学模型及控制电流逆模型对半主动控制系统的控制精度具有重要影响. 采用正弦及余弦型魔术公式,基于骨架曲线与滞回分离的建模方法,建立改进的磁流变阻尼器动态阻尼力模型;采用基于Sobol序列的差分-禁忌混合优化算法对阻尼力模型进行参数识别,构建包含激励特性及控制电流参数的通用数学模型;在试验测试及正向模型基础上,利用自适应神经模糊系统建立阻尼器控制电流逆模型. 研究结果表明:本文建立的正逆模型均能够有效表征磁流变阻尼器的非线性行为及滞回特性;改进魔术公式模型在不同激励特性及电流工况下的平均百分比误差在3.4%附近变化;逆向动力学模型计算的控制电流误差均方根值为0.0869~0.1171 A;经过控制电流逆模型与阻尼器正向模型串联模型计算的预测阻尼力误差均方根值为阻尼器最大阻尼力的5.6%;通过试验测试与仿真结果对比,验证了本文提出的阻尼器数学模型具有较好的精度和适用性,能够改善座椅悬架系统振动传递特性.
Abstract:The magnetorheological (MR) damper has attracted an increasing amount of attention in the field of vibration control because of its excellent adjustable damping performance. A modified model based on the modeling method of skeleton curve and hysteresis separation is proposed with sine and cosine magic formulas of MR damper in this study. The sobol sequence-based differential-tabu hybrid algorithm (SS-DTHA) is used to identify the parameters of the damping force model, and a general mathematical model including excitation characteristics and control current parameters is established. On the basis of test data and forward damper force model, the inverse model of MR damper control current is established by using adaptive-network-based fuzzy inference systems (ANFIS). The results show that the forward and inverse models established in this paper can better characterize the nonlinear behavior and hysteretic characteristics of the magnetorheological damper. The average percentage error of the improved magic formula model varies around 3.4% under different excitation characteristics and current conditions. The root means square (RMS) error of control current calculated by inverse dynamics model is 0.0869−0.1171 A. The RMS of error between the predicted damping force calculated by the control current inverse model and the damper forward model in series is 5.6% of the maximum damping force of the damper. Through the comparison of test data and simulation results, it is proved that the mathematical model of damper proposed in this paper has good accuracy and applicability, and can improve the vibration transmission characteristics of seat suspension system.
-
Key words:
- automotive engineering /
- seat suspension /
- MR damper /
- vibration control /
- mathematical models
-
表 1 不同工况模型平均百分比误差
Table 1. Comparison of average percentage error of models under different working conditions
电流/A 幅值 5 mm 幅值 15 mm 3 Hz 4 Hz 3 Hz 4 Hz 0 0.0447 0.0355 0.0457 0.0452 0.2 0.0474 0.0355 0.0289 0.0396 0.4 0.0316 0.0321 0.0302 0.0319 0.6 0.0310 0.0322 0.0269 0.0284 0.8 0.0344 0.0349 0.0305 0.0315 1.0 0.0308 0.0359 0.0282 0.0273 表 2 滞回模型参数辨识结果
Table 2. Parameter identification of hysteretic model
变量 辨识结果 ${F}_{{\rm{max}}}$ $\left(-9.36{I}^{2} + 123.97I + 23.05\right)\left(4.29{ {v}^{0.19}_{{\rm{m}}} }\right)$ ${\dot{x} }_{{\rm{center}}}$ $\left(-3.47I + 1.91\right)(-2.35{\rm{ln} }\;{v}_{ {\rm{m} } } + 9.21)$ ${B}_{{\rm{p}}}$ $1.97{v}^{-1.09}_{{\rm{m}}}$ ${B}_{{\rm{h}}}$ $1.01{v}_{{\rm{m}}}^{-0.86}$ $ c $ $0.32{ {v}_{ {\rm{m} } } ^{-1.01}}$ Cp 1.32 Dp 0.70 Ep −7.64 Ch 1.10 Dh 0.42 Eh −11.50 f0 −80.34 -
[1] ROSLI R, MOHAMED Z. Optimization of modified Bouc–Wen model for magnetorheological damper using modified cuckoo search algorithm[J]. Journal of Vibration and Control, 2021, 27(17/18): 1956-1967. [2] XIAO P, GAO H, NIU L M. Research on magnetorheological damper suspension with permanent magnet and magnetic valve based on developed FOA-optimal control algorithm[J]. Journal of Mechanical Science and Technology, 2017, 31(7): 3109-3119. doi: 10.1007/s12206-017-0601-7 [3] ZHU H T, RUI X T, YANG F F, et al. Semi-active scissors-seat suspension with magneto-rheological damper[J]. Frontiers in Materials, 2020, 7: 591283.1-591283.13. [4] CHEN Q, ZHANG Y, ZHU C W, et al. A sky-hook sliding mode semiactive control for commercial truck seat suspension[J]. Journal of Vibration and Control, 2021, 27(11/12): 1201-1211. [5] LIU X H, WANG N N, WANG K, et al. Optimizing vibration attenuation performance of a magnetorheological damper-based semi-active seat suspension using artificial intelligence[J]. Frontiers in Materials, 2019, 6: 269.1-269.12. [6] WANG E R, MA X Q, RAKHELA S, et al. Modelling the hysteretic characteristics of a magnetorheological fluid damper[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(7): 537-550. doi: 10.1243/095440703322114924 [7] ZHU H T, RUI X T, YANG F F, et al. An efficient parameters identification method of normalized Bouc-Wen model for MR damper[J]. Journal of Sound and Vibration, 2019, 448: 146-158. doi: 10.1016/j.jsv.2019.02.019 [8] HE Y C, LIANG G Q, XUE B, et al. A unified MR damper model and its inverse characteristics investigation based on the neuro-fuzzy technique[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 61(2): 225-245. doi: 10.3233/JAE-180114 [9] LV H Z, ZHANG S S, SUN Q, et al. The dynamic models, control strategies and applications for magnetorheological damping systems: a systematic review[J]. Journal of Vibration Engineering and Technologies, 2021, 9(1): 131-147. [10] TSANG H H, SU R K L, CHANDLER A M. Simplified inverse dynamics models for MR fluid dampers[J]. Engineering Structures, 2006, 28(3): 327-341. doi: 10.1016/j.engstruct.2005.06.013 [11] KHALID M, YUSOF R, JOSHANI M, et al. Nonlinear identification of a magneto-rheological damper based on dynamic neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(3): 221-233. doi: 10.1111/mice.12005 [12] ASKARI M, LI J C, SAMALI B, et al. Experimental forward and inverse modelling of magnetorheological dampers using an optimal Takagi–Sugeno–Kang fuzzy scheme[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(7): 904-914. doi: 10.1177/1045389X15604403 [13] 薛兵,杜永昌,刘源,等. 基于机理的磁流变减震器滞回特性魔术公式模型[J]. 振动工程学报,2017,30(5): 774-780. doi: 10.16385/j.cnki.issn.1004-4523.2017.05.010XUE Bing, DU Yongchang, LIU Yuan, et al. A mechanism-based magic formula model for hysteretic characteristics of magneto rheological damper[J]. Journal of Vibration Engineering, 2017, 30(5): 774-780. doi: 10.16385/j.cnki.issn.1004-4523.2017.05.010 [14] 于建强. 汽车剪式座椅悬架磁流变旋转式阻尼器螺旋流动机理及其关键技术[D]. 重庆: 重庆大学, 2018 [15] YU J Q, DONG X M, ZHANG Z L. A novel model of magnetorheological damper with hysteresis division[J]. Smart Materials and Structures, 2017, 26(10): 105042.1-105042.15.