• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

半封闭煤火演化过程的动力学特征

赵婧昱 张廷豪 宋佳佳 郭涛 张宇轩 邓军

赵婧昱, 张廷豪, 宋佳佳, 郭涛, 张宇轩, 邓军. 半封闭煤火演化过程的动力学特征[J]. 西南交通大学学报, 2023, 58(1): 117-124, 149. doi: 10.3969/j.issn.0258-2724.20210878
引用本文: 赵婧昱, 张廷豪, 宋佳佳, 郭涛, 张宇轩, 邓军. 半封闭煤火演化过程的动力学特征[J]. 西南交通大学学报, 2023, 58(1): 117-124, 149. doi: 10.3969/j.issn.0258-2724.20210878
ZHAO Jingyu, ZHANG Tinghao, SONG Jiajia, GUO Tao, ZHANG Yuxuan, DENG Jun. Dynamic Characteristics for Evolution Process of Semi-closed Coal Fire[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 117-124, 149. doi: 10.3969/j.issn.0258-2724.20210878
Citation: ZHAO Jingyu, ZHANG Tinghao, SONG Jiajia, GUO Tao, ZHANG Yuxuan, DENG Jun. Dynamic Characteristics for Evolution Process of Semi-closed Coal Fire[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 117-124, 149. doi: 10.3969/j.issn.0258-2724.20210878

半封闭煤火演化过程的动力学特征

doi: 10.3969/j.issn.0258-2724.20210878
基金项目: 国家自然科学基金(52174202)
详细信息
    作者简介:

    赵婧昱(1990—),女,副教授,博士,研究方向为煤火自燃、古建筑消防,E-mail:zhaojingyu90@xust.edu.cn

  • 中图分类号: TD752.2

Dynamic Characteristics for Evolution Process of Semi-closed Coal Fire

  • 摘要:

    为研究松散煤体自然发火过程中氧气及温度阶段性的演化规律,搭建了半封闭煤火演化实验系统,探究煤体从常温到燃点过程中氧气浓度及温度变化情况,建立松散煤体自燃蔓延过程自然吸氧强度模型,分析自燃过程中氧气分布特征和温度场水平与纵向阶段性移动特征. 结果表明:半封闭煤火演化实验系统能够较好地再现煤自燃“自然吸氧”过程,验证了自然吸氧效应为煤体自燃蔓延提供动力;煤体自然发火过程中,温度变化时间滞后于氧气浓度变化时间,其滞后时间差随煤层纵深变化的增加而增加;在水平方向上高温区域迁移趋势主要受煤体内部裂隙与孔隙分布的影响;自然吸氧强度与测点峰值温度随煤体纵深增加而降低,未发生自燃区域的下方氧气浓度大于其上层氧气浓度. 研究成果对开采、运输、储存状态下的松散煤体自然发火的防治提供理论基础.

     

  • 图 1  实验系统

    Figure 1.  Experimental system

    图 2  半封闭煤火发展演化模拟实验装置

    Figure 2.  Device for simulating semi-closed coal fire evolution

    图 3  氧气浓度变化与时间关系曲线

    Figure 3.  Curves of oxygen concentration versus time

    图 4  自然吸氧强度变化与时间关系曲线

    Figure 4.  Curves of natural absorption oxygen intensity versus time

    图 5  在空气气氛下的TG及DTG曲线

    Figure 5.  TG and DTG curves in air atmosphere

    图 6  纵向温度变化与时间关系

    Figure 6.  Relationship between longitudinal temperature change and time

    图 7  温度变化与距离关系

    Figure 7.  Relationship between temperature change and distance

    图 8  温升速率随时间变化曲线

    Figure 8.  Curves of temperature rising rate over time

    图 9  温度变化与时间关系

    Figure 9.  Relationship between temperature change and time

    表  1  实验条件

    Table  1.   Experimental conditions

    项目煤样粒径/mm室温/℃湿度/%煤高/mm装煤量/kg
    参数孟村1066848057.7
    下载: 导出CSV

    表  2  煤质分析

    Table  2.   Coal quality analysis %

    工业分析元素成分分析
    MadAadVadFCadCHONS
    4.414.033.548.078.84.714.21.30.8
    下载: 导出CSV

    表  3  不同氧化自燃阶段温度划分

    Table  3.   Temperature levels in oxidized spontaneous combustion

    阶段氧化自燃阶段平均温度范围/℃
    第一阶段缓慢氧化阶段 0~111.0
    第二阶段快速升温阶段112.0~303.0
    第三阶段高温自燃阶段304.0~604.0
    下载: 导出CSV

    表  4  纵向测点到达各阶段的时间与温度

    Table  4.   Time and temperature of longitudinal measuring points at each phase

    阶段 PTC1 PTC2 PTC3 PTC4 PTC5
    时段/h 温度/℃ 时段/h 温度/℃ 时段/h 温度/℃ 时段/h 温度/℃ 时段/h 温度/℃
    第一阶段 0~4.5 121.0 0~12.0 132.0 0~14.0 120.0 0~19.5 115.0 0~32.5 121.0
    第二阶段 4.5~6.5 316.0 12.0~13.5 314.0 14.0~16.0 308.0 19.5~21.0 301.0 23.5~48.0 302.0
    第三阶段 6.5~23.0 602.0 13.5~24.0 598.0 16.0~48.0 577.0 21.0~43.0 492.0 48.0~73.0 476.0
    下载: 导出CSV
  • [1] XU J P, GAO W, XIE H P, et al. Integrated tech-paradigm based innovative approach towards ecological coal mining[J]. Energy, 2018, 151: 297-308. doi: 10.1016/j.energy.2018.02.090
    [2] 邓军,赵婧昱,张嬿妮,等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报,2016,41(5): 1164-1172.

    DENG Jun, ZHAO Jingyu, ZHANG Yanni, et al. Micro-characteristics of spontaneous combustion of second oxidation with different rank coals[J]. Journal of China Coal Society, 2016, 41(5): 1164-1172.
    [3] 王佟,张博,王庆伟,等. 中国绿色煤炭资源概念和内涵及评价[J]. 煤田地质与勘探,2017,45(1): 1-8,13. doi: 10.3969/j.issn.1001-1986.2017.01.001

    WANG Tong, ZHANG Bo, WANG Qingwei, et al. Green coal resources in China: concept, characteristics and assessment[J]. Coal Geology & Exploration, 2017, 45(1): 1-8,13. doi: 10.3969/j.issn.1001-1986.2017.01.001
    [4] 邓军,李贝,王凯,等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术,2016,44(10): 1-7,101. doi: 10.13199/j.cnki.cst.2016.10.001

    DENG Jun, LI Bei, WANG Kai, et al. Research status and outlook on prevention and control technology of coal fire disaster in China[J]. Coal Science and Technology, 2016, 44(10): 1-7,101. doi: 10.13199/j.cnki.cst.2016.10.001
    [5] 曾强,聂静,蒲燕. 地下煤火土壤典型重金属分布特征[J]. 煤炭学报,2016,41(8): 1989-1996.

    ZENG Qiang, NIE Jing, PU Yan. Characteristics of the distribution of typical heavy metals in the soils of underground coal fire[J]. Journal of China Coal Society, 2016, 41(8): 1989-1996.
    [6] 聂静,曾强,蒲燕,等. 地下煤火土壤典型重金属砷迁移规律[J]. 煤炭学报,2017,42(2): 527-537.

    NIE Jing, ZENG Qiang, PU Yan, et al. Migration of typical heavy metal as in the soil of underground coal fire[J]. Journal of China Coal Society, 2017, 42(2): 527-537.
    [7] 文虎,程小蛟,许延辉,等. 松散煤体自然发火过程氡析出及运移规律[J]. 煤炭学报,2019,44(9): 2816-2823.

    WEN Hu, CHENG Xiaojiao, XU Yanhui, et al. Law of radon precipitation and migration in loose coal during spontaneous combustion process[J]. Journal of China Coal Society, 2019, 44(9): 2816-2823.
    [8] SONG Z Y, ZHU H Q, TAN B, et al. Numerical study on effects of air leakages from abandoned galleries on hill-side coal fires[J]. Fire Safety Journal, 2014, 69: 99-110. doi: 10.1016/j.firesaf.2014.08.011
    [9] QIN B T, WANG H T, YANG J Z, et al. Large-area goaf fires: a numerical method for locating high-temperature zones and assessing the effect of liquid nitrogen fire control[J]. Environmental Earth Sciences, 2016, 75(21): 1396.1-1396.14.
    [10] 邓军,徐精彩,张辛亥. 综放面采空区温度场动态数学模化及应用[J]. 中国矿业大学学报,1999,28(2): 179-181. doi: 10.3321/j.issn:1000-1964.1999.02.023

    DENG Jun, XU Jingcai, ZHANG Xinhai. Dynamic computer simulation of temperature field in goaf areas of fully mechanized roof coal caving face[J]. Journal of China University of Mining and Technology, 1999, 28(2): 179-181. doi: 10.3321/j.issn:1000-1964.1999.02.023
    [11] 褚廷湘,李品,余明高. 水分相变下松散煤体导热系数的数值模拟研究[J]. 煤炭学报,2017,42(7): 1782-1789.

    CHU Tingxiang, LI Pin, YU Minggao. Simulation study of water phase transition effects on thermal conductivity of loose coal[J]. Journal of China Coal Society, 2017, 42(7): 1782-1789.
    [12] 蔡灿凡. 煤田火灾温度场及应力场演化过程相似模拟实验研究[D]. 西安: 西安科技大学, 2017.
    [13] 赵晓虎,孙鹏帅,杨眷,等. 应用于煤自燃指标气体体积分数在线监测系统[J]. 煤炭学报,2021,46(增1): 319-327. doi: 10.13225/j.cnki.jccs.2020.1368

    ZHAO Xiaohu, SUN Pengshuai, YANG Juan, et al. Online monitoring system of index gases concentration applied to coal sponta-neous combustion[J]. Journal of China Coal Society, 2021, 46(S1): 319-327. doi: 10.13225/j.cnki.jccs.2020.1368
    [14] 赵婧昱,张永利,邓军,等. 影响煤自燃气体产物释放的主要活性官能团[J]. 工程科学学报,2020,42(9): 1139-1148.

    ZHAO Jingyu, ZHANG Yongli, DENG Jun, et al. Key functional groups affecting the release of gaseous products during spontaneous combustion of coal[J]. Chinese Journal of Engineering, 2020, 42(9): 1139-1148.
    [15] 赵婧昱,宋佳佳,郭涛,等. 基于煤火发展演化的松散煤体自燃温度纵深蔓延特征[J]. 煤炭学报,2021,46(6): 1759-1767.

    ZHAO Jingyu, SONG Jiajia, GUO Tao, et al. Temperature field migration characteristics of loose coal based on experimental scale[J]. Journal of China Coal Society, 2021, 46(6): 1759-1767.
    [16] 李林,陈军朝,姜德义,等. 煤自燃全过程高温区域及指标气体时空变化实验研究[J]. 煤炭学报,2016,41(2): 444-450.

    LI Lin, CHEN Junchao, JIANG Deyi, et al. Experimental study on temporal variation of high temperature region and index gas of coal spontaneous combustion[J]. Journal of China Coal Society, 2016, 41(2): 444-450.
    [17] 张九零,朱定,朱壮. 煤变质程度对煤自燃特性的影响[J]. 矿业安全与环保,2020,47(3): 42-44.

    ZHANG Jiuling, ZHU Ding, ZHU Zhuang. The influence of metamorphism degree on spontaneous combustion characteristics of coal[J]. Mining Safety & Environmental Protection, 2020, 47(3): 42-44.
    [18] 王海燕,周心权,张红军,等. 煤田露头自燃的渗流-热动力耦合模型及应用[J]. 北京科技大学学报,2010,32(2): 152-157.

    WANG Haiyan, ZHOU Xinquan, ZHANG Hongjun, et al. Seepage-thermal dynamical coupling model for spontaneous combustion of coalfield outcrop and its application[J]. Journal of University of Science and Technology Beijing, 2010, 32(2): 152-157.
    [19] 陈晓坤,李海涛,王秋红,等. 高温松散煤体自吸氧试验装置研制及应用[J]. 中国安全科学学报,2015,25(10): 29-34.

    CHEN Xiaokun, LI Haitao, WANG Qiuhong, et al. Development and application of experimental device for studying oxygen absorption by high temperature loose coal[J]. China Safety Science Journal, 2015, 25(10): 29-34.
    [20] 吴国光,张永建,王光友,等. 松散煤体中空气渗流规律的试验研究[J]. 煤炭科学技术,2009,37(8): 42-45.

    WU Guoguang, ZHANG Yongjian, WANG Guangyou, et al. Test and study on air transfusion law in loose coal mass[J]. Coal Science and Technology, 2009, 37(8): 42-45.
    [21] ONIFADE M, GENC B. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology, 2020, 30(3): 303-311. doi: 10.1016/j.ijmst.2020.03.001
    [22] 郭兴明,徐精彩,惠世恩. 松散煤体中氧气输运过程的理论分析[J]. 煤炭学报,2001,26(6): 643-648. doi: 10.3321/j.issn:0253-9993.2001.06.016

    GUO Xingming, XU Jingcai, HUI Shien. Theoretical analysis on law of transporting oxygen in the loose coal[J]. Journal of China Coal Society, 2001, 26(6): 643-648. doi: 10.3321/j.issn:0253-9993.2001.06.016
    [23] 张英华,周佩玲,黄志安,等. 联络巷对采空区氧化升温带影响的多场耦合模拟研究[J]. 工程科学学报,2016,38(8): 1050-1058.

    ZHANG Yinghua, ZHOU Peiling, HUANG Zhian, et al. Multi-field coupling numerical simulation of the crossheading effect on oxidization and heat accumulation zones in gob areas[J]. Chinese Journal of Engineering, 2016, 38(8): 1050-1058.
    [24] 周佩玲,张英华,黄志安,等. 非均质孔隙率采空区氧化升温规律四维动态模拟[J]. 工程科学学报,2016,38(10): 1350-1358.

    ZHOU Peiling, ZHANG Yinghua, HUANG Zhian, et al. 4D dynamic simulation of coal oxidation heating law in gobs with heterogeneous porosity[J]. Chinese Journal of Engineering, 2016, 38(10): 1350-1358.
    [25] 邓军,徐精彩,李莉,等. 不同氧气浓度煤样耗氧特性实验研究[J]. 湘潭矿业学院学报,2001,16(2): 12-14,18. doi: 10.3969/j.issn.1672-9102.2001.02.004

    DENG Jun, XU Jingcai, LI Li, et al. Experimental investigation on the relationship of oxygen consumption rate of coal and the concentration of oxygen[J]. Journal of Xiangtan Mining Institute, 2001, 16(2): 12-14,18. doi: 10.3969/j.issn.1672-9102.2001.02.004
    [26] 朱红青,王海燕,沈静,等. 氧浓度对松散煤耗氧速率影响的实验研究[J]. 煤炭工程,2013,45(8): 110-112,115.

    ZHU Hongqing, WANG Haiyan, SHEN Jing, et al. Experiment study on oxygen concentration affected to oxygen consumption rate of loose coal[J]. Coal Engineering, 2013, 45(8): 110-112,115.
    [27] 谭波,牛会永,和超楠,等. 回采情况下采空区煤自燃温度场理论与数值分析[J]. 中南大学学报(自然科学版),2013,44(1): 381-387.

    TAN Bo, NIU Huiyong, HE Chaonan, et al. Goaf coal spontaneous combustion temperature field theory and numerical analysis under mining conditions[J]. Journal of Central South University (Science and Technology), 2013, 44(1): 381-387.
    [28] 曹代勇,樊新杰,吴查查,等. 内蒙古乌达煤田火区相关裂隙研究[J]. 煤炭学报,2009,34(8): 1009-1014. doi: 10.3321/j.issn:0253-9993.2009.08.001

    CAO Daiyong, FAN Xinjie, WU Chacha, et al. Study on the fractures related with coalfield fire area in Wuda coalfield, Inner Mongolia[J]. Journal of China Coal Society, 2009, 34(8): 1009-1014. doi: 10.3321/j.issn:0253-9993.2009.08.001
    [29] KRISHNASWAMY S, BHAT S, GUNN R D, et al. Low-temperature oxidation of coal: a single-particle reaction-diffusion model[J]. Fuel, 1996, 75(3): 333-343. doi: 10.1016/0016-2361(95)00180-8
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  130
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-10
  • 修回日期:  2022-08-20
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2022-09-22

目录

    /

    返回文章
    返回