• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于高阶Lamb波模态频谱差异系数的腐蚀检测

陈飞宇 卢丙举 曹徐伟 曾亮

陈飞宇, 卢丙举, 曹徐伟, 曾亮. 基于高阶Lamb波模态频谱差异系数的腐蚀检测[J]. 西南交通大学学报, 2023, 58(5): 1162-1170. doi: 10.3969/j.issn.0258-2724.20210864
引用本文: 陈飞宇, 卢丙举, 曹徐伟, 曾亮. 基于高阶Lamb波模态频谱差异系数的腐蚀检测[J]. 西南交通大学学报, 2023, 58(5): 1162-1170. doi: 10.3969/j.issn.0258-2724.20210864
CHEN Feiyu, LU Bingju, CAO Xuwei, ZENG Liang. Corrosion Detection Based on Frequency Spectrum Difference Coefficient of Higher-Order Lamb Modes[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1162-1170. doi: 10.3969/j.issn.0258-2724.20210864
Citation: CHEN Feiyu, LU Bingju, CAO Xuwei, ZENG Liang. Corrosion Detection Based on Frequency Spectrum Difference Coefficient of Higher-Order Lamb Modes[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1162-1170. doi: 10.3969/j.issn.0258-2724.20210864

基于高阶Lamb波模态频谱差异系数的腐蚀检测

doi: 10.3969/j.issn.0258-2724.20210864
基金项目: 国家自然科学基金(52375123);中国博士后科学基金(2021M693882)
详细信息
    作者简介:

    陈飞宇(1987—),男,高级工程师,研究方向为无损检测,E-mail:chenfeiyu@mail.tju.edu.cn

    通讯作者:

    曾亮(1985—),男,副教授,研究方向为无损检测与结构健康监测,E-mail:liangzeng@xjtu.edu.cn

  • 中图分类号: TB553

Corrosion Detection Based on Frequency Spectrum Difference Coefficient of Higher-Order Lamb Modes

  • 摘要:

    针对工业设备中大型薄壁结构件的腐蚀检测问题,提出一种基于频谱相干性分析的高阶Lamb波腐蚀损伤检测方法. 首先,利用略高于截止频率的A1模态Lamb波对含腐蚀薄壁结构的不同位置进行激励,并采集各传播路径上的响应信号;随后,采用频散补偿技术消除信号中的频散效果,通过合适的窗函数对信号中的A1模态直达波包进行分离提取,建立其与激励信号的频谱差异系数 (frequency spectrum difference coefficient, FSDC),通过有限元仿真研究该指标对不同宽度、深度腐蚀损伤的敏感性;最后,在含腐蚀铝板上进行实验验证,结合各路径FSDC指标与概率成像算法,对检测区域的腐蚀损伤进行定位与成像. 结果表明:FSDC值在健康状态下为0,而在不同宽度、深度的腐蚀影响下FSDC在0~1;相较于传统层析成像方法,所提出方法具有更好的检测灵敏度和抗干扰能力.

     

  • 图 1  Lamb波在铝板中的频散曲线

    Figure 1.  Dispersion curves for Lamb waves in aluminum plate

    图 2  A1模态群速度频散随板厚变化的演化关系

    Figure 2.  Evolution of group velocity dispersion of A1 mode with plate thickness

    图 3  1.8 mm 铝板中A1模态的频散关系及其一阶泰勒展开

    Figure 3.  Dispersion relationship and first-order Taylor expansion of A1 mode in aluminum plate with a thickness of 1.8 mm

    图 4  包含矩形槽的二维有限元模型(左边界施加1 000 kHz A1模态的振型)

    Figure 4.  Two-dimensional finite element model with a rectangular notch (applying A1 mode of 1 000 kHz to the left boundary)

    图 5  FSDC随矩形槽宽度、深度的演化关系

    Figure 5.  Evolution of FSDC with width and depth of rectangular notch

    图 6  激光-超声系统实验设置

    Figure 6.  Experimental setup for laser–ultrasonic system

    图 7  1.8 mm铝板的扫查示意

    Figure 7.  Layout of inspected aluminum plate with a thickness of 1.8 mm

    图 8  健康路径L15—P10提取的窄带响应信号

    Figure 8.  Extracted narrow-band response signal from intact path L15—P10

    图 9  健康、损伤路径的补偿实验信号

    Figure 9.  Compensated experimental signals of intact and damaged paths

    图 10  实验中所有路径的FSDC值

    Figure 10.  FSDC values for all paths in experiment

    图 11  基于FSDC的概率成像结果

    Figure 11.  Image obtained from probability reconstruction based on FSDC

    图 12  基于ToF的层析成像

    Figure 12.  ToF-based tomographic image

  • [1] NAGATA Y, HUANG J, ACHENBACH J D, et al. Lamb wave tomography using laser-based ultrasonics[M]. Review of Progress in Quantitative Nondestructive Evaluation. Boston: Springer, 1995: 561-568.
    [2] PEI J, YOUSUF M I, DEGERTEKIN F L, et al. Lamb wave tomography and its application in pipe erosion/corrosion monitoring[J]. Research in Nondestructive Evaluation, 1996, 8(4): 189-197. doi: 10.1080/09349849609409599
    [3] MALYARENKO E V, HINDERS M K. Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures[J]. The Journal of the Acoustical Society of America, 2000, 108(4): 1631-1639. doi: 10.1121/1.1289663
    [4] MALYARENKO E V, HINDERS M K. Ultrasonic Lamb wave diffraction tomography[J]. Ultrasonics, 2001, 39(4): 269-281. doi: 10.1016/S0041-624X(01)00055-5
    [5] BELANGER P, CAWLEY P. Feasibility of low frequency straight-ray guided wave tomography[J]. NDT & E International, 2009, 42(2): 113-119.
    [6] BELANGER P, CAWLEY P. Lamb wave tomography to evaluate the maximum depth of corrosion patches[C]//34th Annual Review of Progress in Quantitative Nondestructive Evaluation. Colorado: American Institute of Physics, 2008, 975(1): 1290-1297.
    [7] HUTHWAITE P. Improving accuracy through density correction in guided wave tomography[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472(2186): 20150832.1-20150832.25.
    [8] RAO J, RATASSEPP M, FAN Z. Guided wave tomography based on full waveform inversion[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63(5): 737-745. doi: 10.1109/TUFFC.2016.2536144
    [9] RAO J, RATASSEPP M, FAN Z. Investigation of the reconstruction accuracy of guided wave tomography using full waveform inversion[J]. Journal of Sound and Vibration, 2017, 400: 317-328. doi: 10.1016/j.jsv.2017.04.017
    [10] ROSE J L, BARSHINGER J N. Using ultrasonic guided wave mode cutoff for corrosion detection and classification[C]//1998 IEEE Ultrasonics Symposium. Sendai: IEEE, 1998(1): 851-854.
    [11] LUO Z, ZENG L, LIN J. A hidden corrosion detection method based on robust multimodal Lamb waves[J]. Measurement Science and Technology, 2020, 31(4): 044002.1-044002.12.
    [12] CAO X, ZENG L, LIN J, et al. A correlation-based approach to corrosion detection with Lamb wave mode cutoff[J]. Journal of Nondestructive Evaluation, 2019, 38(87): 1-16.
    [13] ROSE J L. Ultrasonic guided waves in solid media[M]. New York: Cambridge University Press, 2014: 104-106
    [14] ZENG L, LIN J, BAO J, et al. Spatial resolution improvement for Lamb wave-based damage detection using frequency dependency compensation[J]. Journal of Sound and Vibration, 2017, 394: 130-145.
    [15] AULD B A. Acoustic fields and waves in solids: volume 2[M]. Florida: [s.n.], 1973: 75-94.
    [16] PAVLAKOVIC B N. Leaky guided ultrasonic waves in NDT[D]. London, UK: Imperial College London, 1998.
    [17] MICHAELS J E, LEE S J, CROXFORD A J, et al. Chirp excitation of ultrasonic guided waves[J]. Ultrasonics, 2013, 53(1): 265-270. doi: 10.1016/j.ultras.2012.06.010
    [18] ZHOU C, SU Z, CHENG L. Probability-based diagnostic imaging using hybrid features extracted from ultrasonic Lamb wave signals[J]. Smart Materials and Structures, 2011, 20(12): 125005.1-125005.14.
    [19] SUBBARAO P M V, MUNSHI P, MURALIDHAR K. Performance of iterative tomographic algorithms applied to non-destructive evaluation with limited data[J]. NDT & E International, 1997, 30(6): 359-370.
    [20] HANSEN P C, JØRGENSEN J S. AIR tools II: algebraic iterative reconstruction methods, improved implementation[J]. Numerical Algorithms, 2018, 79(1): 107-137. doi: 10.1007/s11075-017-0430-x
  • 加载中
图(12)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  112
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 修回日期:  2022-02-17
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2022-03-05

目录

    /

    返回文章
    返回