• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

气动翼对高速磁悬浮列车升力特性的影响

戴志远 李田 张卫华 张继业

戴志远, 李田, 张卫华, 张继业. 气动翼对高速磁悬浮列车升力特性的影响[J]. 西南交通大学学报, 2022, 57(3): 498-505. doi: 10.3969/j.issn.0258-2724.20210855
引用本文: 戴志远, 李田, 张卫华, 张继业. 气动翼对高速磁悬浮列车升力特性的影响[J]. 西南交通大学学报, 2022, 57(3): 498-505. doi: 10.3969/j.issn.0258-2724.20210855
DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 498-505. doi: 10.3969/j.issn.0258-2724.20210855
Citation: DAI Zhiyuan, LI Tian, ZHANG Weihua, ZHANG Jiye. Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 498-505. doi: 10.3969/j.issn.0258-2724.20210855

气动翼对高速磁悬浮列车升力特性的影响

doi: 10.3969/j.issn.0258-2724.20210855
基金项目: 国家重点研发计划(2020YFA0710902);国家自然科学基金(12172308)
详细信息
    作者简介:

    戴志远(1996—),男,博士研究生,研究方向为列车空气动力学,E-mail: daizhiyuan18@my.swjtu.edu.cn

    通讯作者:

    李田(1984—),男,副研究员,研究方向为列车空气动力学,E-mail: litian2008@home.swjtu.edu.cn

  • 中图分类号: U271

Effect of Aerodynamic Wings on Lift Force Characteristics of High-Speed Maglev Train

  • 摘要:

    磁悬浮列车高速运行时受到较大气动升力作用,尤其是尾车向上的气动升力较大,易使悬浮性能恶化,甚至导致悬浮控制系统失效,影响列车的乘坐舒适性及运行安全性,因此亟待开展高速磁悬浮列车的尾车升力特性研究及改善工作. 对开展过风洞试验的高速磁悬浮列车进行数值模拟计算,得到的列车表面压力系数与风洞实验数据吻合较好,并加装气动翼改善高速磁悬浮尾车气动升力,研究了气动翼角度、数量对尾车气动性能的影响. 研究结果表明:仅安装一个气动翼时,其自身的气动升力随角度的增加而减小,但尾车气动升力则呈现先减小后增大的规律,气动翼角度为12.5° 时尾车升力最小,与原始磁悬浮列车相比气动升力系数减小3.9%,气动翼及尾车气动阻力略有增加;以气动翼与车体切线角度保持不变为基准在尾车安装多个12.5° 气动翼,不同位置气动翼的气动阻力基本相同,气动翼数量增加后尾车气动阻力随之增大;不同位置气动翼的气动升力存在差异,向鼻尖方向气动翼的气动升力递减,尾车气动升力随气动翼数量增加先减小后趋于稳定;各方案中安装2个气动翼的磁悬浮列车气动性能相对更优,与原始磁悬浮列车相比尾车气动升力减小4.6%,整车阻力仅增加1.4%.

     

  • 图 1  数值计算模型

    Figure 1.  Numerical simulation models

    图 2  y = 0截面压力系数分布

    Figure 2.  Pressure coefficient distribution at plane y = 0

    图 3  列车周围网格及边界层网格

    Figure 3.  Cells around the maglev trian and boundary layer

    图 4  气动翼模型及位置

    Figure 4.  Model and location of the aerodynamic wing

    图 5  尾车表面压力系数及气动翼周围流场压力系数分布

    Figure 5.  Pressure coefficient distribution of the tail car and the pressure distribution around aerodynamic wings

    图 6  气动翼及尾车y = 0截面压力系数分布

    Figure 6.  Pressure coefficient distribution of tail car and aerodynamic wings at plane y = 0

    图 7  气动翼位置及编号

    Figure 7.  Positions and numbering of aerodynamic wings

    图 8  气动翼附近流场压力系数分布

    Figure 8.  Pressure coefficient distribution of flow field near the aerodynamic wings

    图 9  气动翼及尾车y = 0截面压力系数分布

    Figure 9.  Pressure coefficient distribution of tail car and aerodynamic wings at plane y = 0

    表  1  列车及气动翼的气动力系数

    Table  1.   Aerodynamic force coefficient of the maglev trian and aerodynamic wings

    气动翼角度/(°)CdHCdMCdTCdWCdTTClHClMClTClWClTT
    未安装0.0820.0510.0710.0710.2320.1160.5690.569
    5.00.0820.0510.0710.0010.0720.2320.1160.5600.0130.573
    10.00.0820.0510.0710.0010.0720.2320.1160.5590.0100.569
    12.50.0820.0510.0710.0020.0730.2320.1160.5390.0080.547
    15.00.0820.0510.0710.0020.0730.2320.1160.5610.0050.566
    17.50.0820.0510.0710.0030.0740.2320.1160.5670.0030.570
    下载: 导出CSV

    表  2  尾车及气动翼的气动力系数

    Table  2.   Aerodynamic force coefficients of the tail car and aerodynamic wings

    名称Cd-TCd-W1Cd-W2Cd-W3Cd-TTCl-TCl-W1Cl-W2Cl-W3Cl-TT
    未安装0.0710.0710.5690.569
    T10.0710.0020.0730.5590.0080.547
    T20.0700.0020.0020.0740.5280.0080.0070.543
    T30.0690.0020.0020.0020.0750.5210.0080.0070.0060.543
    下载: 导出CSV
  • [1] 邓自刚,张勇,王博,等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报,2019,54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204

    DENG Zhigang, ZHANG Yong, WANG Bo, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063-1072. doi: 10.3969/j.issn.0258-2724.20180204
    [2] 王家素,王素玉. 高温超导磁悬浮列车研究综述[J]. 电气工程学报,2015,10(11): 1-10. doi: 10.11985/2015.11.001

    WANG Jiasu, WANG Suyu. High temperature superconducting maglev train[J]. Journal of Electrical Engineering, 2015, 10(11): 1-10. doi: 10.11985/2015.11.001
    [3] DONG F L, HUANG Z, HAO L N, et al. An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs[J]. Scientific Reports, 2019, 9(1): 1-12.
    [4] ZHOU P, LI T, ZHAO C F, et al. Numerical study on the flow field characteristics of the new high-speed maglev train in open air[J]. Journal of Zhejiang University−SCIENCE A, 2020, 21(5): 366-381. doi: 10.1631/jzus.A1900412
    [5] 沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报,2005,40(2): 133-137. doi: 10.3969/j.issn.0258-2724.2005.02.001

    SHEN Zhiyun. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133-137. doi: 10.3969/j.issn.0258-2724.2005.02.001
    [6] 翟婉明,赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报,2016,51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001

    ZHAI Wanming, ZHAO Chunfa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. doi: 10.3969/j.issn.0258-2724.2016.02.001
    [7] 丁叁叁,姚拴宝,陈大伟. 高速磁浮列车气动升力特性[J]. 机械工程学报,2020,56(8): 228-234. doi: 10.3901/JME.2020.08.228

    DING Sansan, YAO Shuanbao, CHEN Dawei. Aerodynamic lift force of high-speed maglev train[J]. Journal of Mechanical Engineering, 2020, 56(8): 228-234. doi: 10.3901/JME.2020.08.228
    [8] 李人宪,刘应清,翟婉明. 高速磁悬浮列车纵向及垂向气动力数值分析[J]. 中国铁道科学,2004,25(1): 8-12. doi: 10.3321/j.issn:1001-4632.2004.01.002

    LI Renxian, LIU Yingqing, ZHAI Wanming. Numerical analysis of aerodynamic force in longitudinal and vertical direction for high-speed maglev train[J]. China Railway Science, 2004, 25(1): 8-12. doi: 10.3321/j.issn:1001-4632.2004.01.002
    [9] 刘堂红,田红旗,王承尧. 不同磁浮列车外形的气动性能比较[J]. 国防科技大学学报,2006,28(3): 94-98. doi: 10.3969/j.issn.1001-2486.2006.03.020

    LIU Tanghong, TIAN Hongqi, WANG Chenyao. Aerodynamic performance comparison of several kind of nose shape of maglev train[J]. Journal of National University of Defense Technology, 2006, 28(3): 94-98. doi: 10.3969/j.issn.1001-2486.2006.03.020
    [10] 舒信伟,谷传纲,梁习锋,等. 高速磁浮列车气动阻力性能数值模拟与参数化评估[J]. 交通运输工程学报,2006,6(2): 6-10. doi: 10.3321/j.issn:1671-1637.2006.02.002

    SHU Xinwei, GU Chuangang, LIANG Xifeng, et al. Numerical simulation and parameterized investigation of aerodynamic drag performances of high-speed maglev trains[J]. Journal of Traffic and Transportation Engineering, 2006, 6(2): 6-10. doi: 10.3321/j.issn:1671-1637.2006.02.002
    [11] SUN Z X, WANG M Y, WEI L Y, et al. Aerodynamic shape optimization of an urban maglev train[J]. Acta Mechanica Sinica, 2021, 37(5): 954-969.
    [12] 毕海权,雷波,张卫华. 自然风对高速磁浮列车气动特性的影响[J]. 中国铁道科学,2007,28(2): 67-72.

    BI Haiquan, LEI Bo, ZHANG Weihua. Effects of natural wind on aerodynamic characteristics of high-speed maglev train[J]. China Railway Science, 2007, 28(2): 67-72.
    [13] 梁习锋,沈娴雅. 环境风与列车交会耦合作用下磁浮列车横向气动性能[J]. 中南大学学报(自然科学版),2007,38(4): 751-757. doi: 10.3969/j.issn.1672-7207.2007.04.031

    LIANG Xifeng, SHEN Xianya. Lateral aerodynamic performances of maglev train when two trains meet with wind blowing[J]. Journal of Central South University (Science and Technology), 2007, 38(4): 751-757. doi: 10.3969/j.issn.1672-7207.2007.04.031
    [14] LI T, QIN D, ZHANG J Y. Effect of RANS turbulence model on aerodynamic behavior of trains in crosswind[J]. Chinese Journal of Mechanical Engineering, 2019, 32(5): 85-96. doi: 10.1186/s10033-019-0402-2
    [15] LI T, DAI Z Y, YU M G, et al. Numerical investigation on the aerodynamic resistances of double-unit trains with different gap lengths[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 549-560. doi: 10.1080/19942060.2021.1895321
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  193
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2021-12-28
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回