• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于漏磁补偿的混合电磁铁磁力修正研究

黎松奇 罗成 张昆仑

黎松奇, 罗成, 张昆仑. 基于漏磁补偿的混合电磁铁磁力修正研究[J]. 西南交通大学学报, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843
引用本文: 黎松奇, 罗成, 张昆仑. 基于漏磁补偿的混合电磁铁磁力修正研究[J]. 西南交通大学学报, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843
LI Songqi, LUO Cheng, ZHANG Kunlun. Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843
Citation: LI Songqi, LUO Cheng, ZHANG Kunlun. Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 604-609. doi: 10.3969/j.issn.0258-2724.20210843

基于漏磁补偿的混合电磁铁磁力修正研究

doi: 10.3969/j.issn.0258-2724.20210843
基金项目: 国家自然科学基金(61603311);中央高校基本科研业务费专项资金(2682017CX050)
详细信息
    作者简介:

    黎松奇(1980—),男,讲师,博士,研究方向为磁浮车辆动力学,E-mail:lisongqi@swjtu.edu.cn

  • 中图分类号: V221.3

Correction of Magnetic Force of Hybrid Electromagnet Based on Magnetic Flux Leakage Compensation

  • 摘要:

    电磁永磁混合磁铁的悬浮磁力具有强非线性特点,与磁铁结构密切相关,而现有混合磁铁磁力解析计算公式忽略了磁路漏磁等因素影响,在实际计算中存在较大误差. 针对这一问题,建立了两种常用混合磁铁结构的磁路模型,分析了边缘磁通分布、磁路漏磁对磁铁工作磁路的影响,推导了两种混合磁铁的磁路方程及相关磁阻,提出了一种新的混合磁铁磁力修正计算方法,最终通过有限元分析对两种结构的混合磁铁磁力进行了验证. 研究结果表明:由于悬浮气隙较大,电磁永磁混合磁铁在电磁力计算中漏磁影响不能忽略;采用本文磁力修正公式计算,两种混合结构电磁力误差分别降低为3.8%和8.3%.

     

  • 图 1  2种混合磁铁模型

    Figure 1.  Two hybrid magnet models

    图 2  有限元电磁力计算结果

    Figure 2.  Calculated results of magnetic force by finite element method

    图 3  边缘磁通及漏磁

    Figure 3.  Edge flux and magnetic flux leakage

    图 4  结构a等效磁路

    Figure 4.  Equivalent magnetic circuit of structure a

    图 5  结构b等效磁路

    Figure 5.  Equivalent magnetic circuit of structure b

    图 6  边缘磁通

    Figure 6.  Edge flux

    图 7  磁力线分布

    Figure 7.  Magnetic field line distribution

    图 8  3D 有限元模型

    Figure 8.  3D finite element model

    图 9  电磁力修正计算

    Figure 9.  Magnetic force correction

  • [1] TZENG Y K, TSIH C W. Optimal design of the electromagnetic levitation with permanent and electro magnets[J]. IEEE Transactions on Magnetics, 1994, 30(6): 4731-4733.
    [2] TZENG Y K, TSIH C W. A novel compensating approach for self-sensing maglev system with controlled-PM electromagnets[J]. IEEE Transactions on Magnetics, 1995, 31(6): 4208-4210.
    [3] CHO H W, HAN H S, LEE J M, et al. Design considerations of EM-PM hybrid levitation and propulsion device for magnetically levitated vehicle[J]. IEEE Transactions on Magnetics, 2009, 45(1): 4632-4635.
    [4] 王莉. 混合EMS磁悬浮系统研究[D]. 成都: 西南交通大学, 2006.
    [5] MORISHITA M, AZUKIZAWA T, KANDA S. A new maglev system for magnetically levitated carrier system[J]. IEEE Transactions on Vehicular Technology, 1989, 38(4): 230-236. doi: 10.1109/25.45486
    [6] 徐正国. 电磁永磁混合悬浮磁悬浮模型车控制方案的研究[D]. 北京: 中国科学院电工研究所, 2005.
    [7] 刘佳兴. 磁悬浮系统的滑模控制研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
    [8] 李云钢,陈树文,陈慧星. 基于超稳定性的混合磁浮系统控制器设计[J]. 控制工程,2010,17(2): 158-161. doi: 10.3969/j.issn.1671-7848.2010.02.009

    LI Yungang, CHEN Shuwen, CHEN Huixing. Controller design of hybrid maglev systems based on hyper-stability[J]. Control Engineering of China, 2010, 17(2): 158-161. doi: 10.3969/j.issn.1671-7848.2010.02.009
    [9] 李卫东,王玮崧,王新屏. 磁悬浮列车简捷鲁棒控制与仿真研究[J]. 电子测量技术,2021,44(2): 56-60.

    LI Weidong, WANG Weisong, WANG Xinping. Research on simple and robust control and simulation of maglev train[J]. Electronic Measurement Technology, 2021, 44(2): 56-60.
    [10] WAI R, YAO J, LEE J. Design of back stepping fuzzy-neural-network control for hybrid maglev transportation system[C]//7th International Conference on Advanced Computational Intelligence. Wuxi: IEEE, 2015, 38-43
    [11] WAI R J, CHEN M W, YAO J X. Observer-based adaptive fuzzy-neural-network control for hybrid maglev transportation system[J]. Neurocomputing, 2016, 175: 10-24. doi: 10.1016/j.neucom.2015.10.006
    [12] 陈贵荣,刘少克,郝阿明. 中低速磁浮列车用混合电磁铁设计分析[J]. 都市快轨交通,2013,26(3): 73-76. doi: 10.3969/j.issn.1672-6073.2013.03.019

    CHEN Guirong, LIU Shaoke, HAO Aming. Design and analysis of the hybrid electromagnet for medium-low-speed maglev trains[J]. Urban Rapid Rail Transit, 2013, 26(3): 73-76. doi: 10.3969/j.issn.1672-6073.2013.03.019
    [13] LIU S K, AN B, LIU S K, et al. Characteristic research of electromagnetic force for mixing suspension electromagnet used in low-speed maglev train[J]. Iet Electric Power Applications, 2015, 9(3): 223-228. doi: 10.1049/iet-epa.2013.0414
    [14] 金森,刘国清,余思儒,等. 基于不等宽结构的混合型悬浮装置的研究[J]. 机车电传动,2016(5): 32-34.

    JIN Sen, LIU Guoqing, YU Siru, et al. Hybrid suspension system based on the unequal width structure[J]. Electric Drive for Locomotives, 2016(5): 32-34.
    [15] 李强, 唐敬虎, 孙凤, 等. 可变磁路式永磁悬浮系统的防跌落防吸附控制[J]. 仪器仪表学报, 2019, 40(3): 246-254.

    LI Qiang, TANG Jinghu, SUN Feng, et al. Anti-fall and anti-adsorption control of permanent magnetismlevitation system with flux path control[J]. Chinese Journal of Scientific Instrument, 2019, 40(3): 246-254.
    [16] 李云钢,闫宇壮,程虎. 混合EMS型磁浮列车的悬浮磁铁设计与分析[J]. 国防科技大学学报,2006,28(5): 94-98. doi: 10.3969/j.issn.1001-2486.2006.05.019

    LI Yungang, YAN Yuzhuang, CHENG Hu. Design and analysis of the hybrid magnet in ems maglev vehicles[J]. Journal of National University of Defense Technology, 2006, 28(5): 94-98. doi: 10.3969/j.issn.1001-2486.2006.05.019
    [17] SAFAEI F, SURATGAR A A, AFSHAR A, et al. Characteristics optimization of the maglev train hybrid suspension system using genetic algorithm[J]. IEEE Transactions on Energy Conversion, 2015, 30(3): 1163-1170. doi: 10.1109/TEC.2014.2388155
    [18] ZHANG Z, SHANG C, SHE L, et al. Structural optimal design of a permanent-electro magnetic suspension magnet for middle-low-speed maglev trains[J]. IET Electrical Systems in Transportation, 2011, 1(2): 61-68. doi: 10.1049/iet-est.2010.0018
    [19] 张志洲,佘龙华,张玲玲,等. 考虑多约束条件的磁浮列车节能型永磁电磁磁铁优化设计[J]. 机械工程学报,2012,48(2): 146-152. doi: 10.3901/JME.2012.02.146

    ZHANG Zhizhou, SHE Longhua, ZHANG Lingling, et al. Optimal design of energy-saving permanent-electro magnet for maglev train with multi-restricted conditions[J]. Journal of Mechanical Engineering, 2012, 48(2): 146-152. doi: 10.3901/JME.2012.02.146
    [20] SONG X, ZHANG K L, LIU G Q, et al. Optimal design of a for middle-low-speed maglev[J]. Open Physics, 2018, 16(1): 168-173. doi: 10.1515/phys-2018-0024
    [21] 郭忠君. 中低速磁浮列车用混合悬浮电磁铁的电磁特性分析[D]. 长沙: 国防科学技术大学, 2008.
    [22] 甘淘利,宋春生,丁成苗. 混合磁悬浮隔振平台径向磁力模型研究[J]. 数字制造科学,2020,18(2): 143-147.

    GAN Taoli, SONG Chunsheng, DING Chengmiao. Research on radial magnetism model of hybrid maglev vibration isolating platform[J]. Digital Manufacture Science, 2020, 18(2): 143-147.
    [23] 罗华军,李文龙,方心宇,等. 混合EMS磁悬浮系统的悬浮力分析[J]. 低温与超导,2021,49(9): 21-25.

    LUO Huajun, LI Wenlong, FANG Xinyu, et al. Suspension force analysis of a hybrid EMS maglev system[J]. Cryogenics & Superconductivity, 2021, 49(9): 21-25.
    [24] 刘少克. 磁浮列车用悬浮电磁铁温度场三维建模与仿真[J]. 系统仿真学报,2013,25(5): 1118-1122.

    LIU Shaoke. 3D Modeling and simulation of temperature field for suspension electromagnet of maglev vehicle[J]. Journal of System Simulation, 2013, 25(5): 1118-1122.
    [25] JIAN L N, XU G Q, MI C C, et al. Analytical method for magnetic field calculation in a low-speed permanent-magnet harmonic machine[J]. IEEE Transactions on Energy Conversion, 2011, 26(3): 862-870. doi: 10.1109/TEC.2011.2140373
    [26] 林其壬, 赵佑民. 磁路设计原理[M]. 北京: 机械工业出版社, 1987.
  • 加载中
图(9)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  112
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2021-12-29
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回