• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

无砟轨道路基不均匀沉降区高速列车动力特性

张乾 蔡小培 钟阳龙 王启好 董博

张乾, 蔡小培, 钟阳龙, 王启好, 董博. 无砟轨道路基不均匀沉降区高速列车动力特性[J]. 西南交通大学学报, 2023, 58(1): 133-140. doi: 10.3969/j.issn.0258-2724.20210830
引用本文: 张乾, 蔡小培, 钟阳龙, 王启好, 董博. 无砟轨道路基不均匀沉降区高速列车动力特性[J]. 西南交通大学学报, 2023, 58(1): 133-140. doi: 10.3969/j.issn.0258-2724.20210830
ZHANG Qian, CAI Xiaopei, ZHONG Yanglong, WANG Qihao, DONG Bo. Dynamic Characteristics of High-Speed Trains in Differential Subgrade Settlement Zone of Ballastless Track[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 133-140. doi: 10.3969/j.issn.0258-2724.20210830
Citation: ZHANG Qian, CAI Xiaopei, ZHONG Yanglong, WANG Qihao, DONG Bo. Dynamic Characteristics of High-Speed Trains in Differential Subgrade Settlement Zone of Ballastless Track[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 133-140. doi: 10.3969/j.issn.0258-2724.20210830

无砟轨道路基不均匀沉降区高速列车动力特性

doi: 10.3969/j.issn.0258-2724.20210830
基金项目: 国家自然科学基金(52178405);中央高校基本科研业务费专项资金(2018JBZ003,2020JBZD013)
详细信息
    作者简介:

    张乾(1993—),男,博士研究生,研究方向为无砟轨道与下部基础变形协调性,E-mail:19115068@bjtu.edu.cn

    通讯作者:

    蔡小培(1982—),男,教授,博士,研究方向为高速铁路无砟轨道力学特性,E-mail:xpcai@bjtu.edu.cn

  • 中图分类号: U213.1;U213.2

Dynamic Characteristics of High-Speed Trains in Differential Subgrade Settlement Zone of Ballastless Track

  • 摘要:

    为研究路基不均匀沉降对无砟轨道损伤及高速列车动力响应的影响,基于混凝土塑性损伤理论,建立了可考虑无砟道床混凝土损伤行为的车辆-无砟轨道-路基耦合动力学模型,并与线弹性模型计算结果进行对比,分析路基不均匀沉降波长、幅值及行车速度对高速列车动力学特性的影响. 结果表明:路基不均匀沉降会造成无砟道床损伤,塑性损伤模型计算结果更能反映轨道服役状态;在各车辆动力学指标中,车体垂向加速度受路基沉降幅值影响最大;车辆动力学响应对波长20 m以下的路基不均匀沉降较为敏感,应对其重点关注;行车速度的增大会增加车辆动力响应,使轮轨作用力明显提升,车辆平稳性指标呈现接近线性的增长趋势.

     

  • 图 1  单轴往复荷载作用下的弹性模量回复

    Figure 1.  Elastic modulus recovery under uniaxial reciprocating load

    图 2  受拉应力与损伤因子

    Figure 2.  Tensile stress and damage factor

    图 3  车辆-无砟轨道-路基耦合动力学模型

    Figure 3.  Coupling dynamics model of vehicle-ballastless track-subgrade

    图 4  轨面变形对比与轨道损伤云图

    Figure 4.  Rail deformation comparison and nephogram of track damage

    图 5  线弹性与塑性损伤模型结果对比

    Figure 5.  Comparison of results between linear elastic model and plastic damage model

    图 6  列车运行及轨道状态示意

    Figure 6.  Schematic of train operation and track status

    图 7  车体垂向加速度

    Figure 7.  Vertical acceleration of vehicle body

    图 8  垂向轮轨力

    Figure 8.  Vertical wheel-rail force

    图 9  Sperling指标与轮重减载率

    Figure 9.  Sperling index and rate of wheel load reduction

    图 10  不同沉降波长下车辆动力学响应

    Figure 10.  Vehicle dynamic responses under different settlement wavelengths

    图 11  不同速度下车辆动力学响应

    Figure 11.  Vehicle dynamic responses at different speeds

    表  1  轨道与路基参数取值

    Table  1.   Parameters of track and subgrade

    结构尺寸弹模/MPa泊松比密度
    /(kg·m−3
    轨枕0.8 m × 0.3 m × 0.15 m360000.1672500
    道床板2.8 m × 0.26 m325000.1672500
    支承层3.4 m × 0.3 m255000.1672500
    基床表层厚 0.4 m1800.3002300
    基床底层厚 2.3 m1200.3002000
    钢筋ϕ20 (纵筋)、ϕ16 (横筋)2000000.3007850
    钢轨CHN602100000.3007850
    下载: 导出CSV

    表  2  模型计算结果对比

    Table  2.   Comparison of model calculation results

    模型 车体垂向加
    速度/(m·s−2
    轮重减
    载率
    轮轨垂向
    力/ kN
    本文 0.73 0.15 108.69
    文献[18] 0.62 0.14 112.68
    下载: 导出CSV
  • [1] XU J M, WANG P, AN B Y, et al. Damage detection of ballastless railway tracks by the impact-echo method[J]. Proceedings of the Institution of Civil Engineers: Transport, 2018, 171(2): 106-114. doi: 10.1680/jtran.16.00146
    [2] 郭宇,高建敏,孙宇,等. 板式无砟轨道轨面变形与路基沉降的映射关系[J]. 西南交通大学学报,2017,52(6): 1139-1147,1215. doi: 10.3969/j.issn.0258-2724.2017.06.014

    GUO Yu, GAO Jianmin, SUN Yu, et al. Mapping relationship between rail deflection of slab track and subgrade settlement[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1139-1147,1215. doi: 10.3969/j.issn.0258-2724.2017.06.014
    [3] 徐庆元,李斌,周智辉. CRTS- Ⅰ型板式无砟轨道线路路基不均匀沉降限值研究[J]. 中国铁道科学,2012,33(2): 1-6. doi: 10.3969/j.issn.1001-4632.2012.02.01

    XU Qingyuan, LI Bin, ZHOU Zhihui. Study on the limited value for the uneven settlement of subgrade under CRTS- Ⅰ type slab track[J]. China Railway Science, 2012, 33(2): 1-6. doi: 10.3969/j.issn.1001-4632.2012.02.01
    [4] ZHANG X H, BURROW M, ZHOU S H. An investigation of subgrade differential settlement on the dynamic response of the vehicle-track system[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(7): 1760-1773. doi: 10.1177/0954409715613538
    [5] GUO Y, ZHAI W M. Long-term prediction of track geometry degradation in high-speed vehicle-ballastless track system due to differential subgrade settlement[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 1-11. doi: 10.1016/j.soildyn.2018.05.024
    [6] SHAN Y, ZHOU S H, ZHOU H C, et al. Iterative method for predicting uneven settlement caused by high-speed train loads in transition-zone subgrade[J]. Transportation Research Record: Journal of the Transportation Research Board, 2017, 2607(1): 7-14. doi: 10.3141/2607-02
    [7] 宋欢平,边学成,蒋建群,等. 高速铁路路基沉降与列车运行速度关联性的研究[J]. 振动与冲击,2012,31(10): 134-140. doi: 10.3969/j.issn.1000-3835.2012.10.029

    SONG Huanping, BIAN Xuecheng, JIANG Jianqun, et al. Correlation between subgrade settlement of high-speed railroad and train operation speed[J]. Journal of Vibration and Shock, 2012, 31(10): 134-140. doi: 10.3969/j.issn.1000-3835.2012.10.029
    [8] 张克平,石广田,和振兴. 路基不均匀沉降对地铁A型车辆动力学特性影响研究[J]. 振动与冲击,2020,39(17): 165-170. doi: 10.13465/j.cnki.jvs.2020.17.022

    ZHANG Keping, SHI Guangtian, HE Zhenxing. Effects of subgrade uneven settlement on dynamic characteristics of metro type A vehicles[J]. Journal of Vibration and Shock, 2020, 39(17): 165-170. doi: 10.13465/j.cnki.jvs.2020.17.022
    [9] CUI X H, XIAO H J. Interface mechanical properties and damage behavior of CRTSⅡ slab track considering differential subgrade settlement[J]. KSCE Journal of Civil Engineering, 2021, 25(6): 2036-2045. doi: 10.1007/s12205-021-0268-6
    [10] 向俊,林士财,余翠英,等. 路基冻胀—融化—沉降循环作用下板式无砟轨道受力与变形分析[J]. 中南大学学报(自然科学版),2019,50(8): 2043-2052.

    XIANG Jun, LIN Shicai, YU Cuiying, et al. Analysis of stress and deformation of slab ballastless track under effect of subgrade frost heaving−melting−settlement cycle[J]. Journal of Central South University (Science and Technology), 2019, 50(8): 2043-2052.
    [11] 严晓波,徐光辉. 路基结构性能不均匀对无砟轨道静力影响分析[J]. 铁道学报,2016,38(1): 98-102. doi: 10.3969/j.issn.1001-8360.2016.01.016

    YAN Xiaobo, XU Guanghui. Analysis of nonuniform performance of subgrade structure on static effect of ballastless track[J]. Journal of the China Railway Society, 2016, 38(1): 98-102. doi: 10.3969/j.issn.1001-8360.2016.01.016
    [12] CUI X H, LING X. Effects of differential subgrade settlement on damage distribution and mechanical properties of CRTS Ⅱ slab track[J]. Construction and Building Materials, 2021, 271: 121821.1-121821.10.
    [13] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2011.
    [14] 张鲁顺,赵国堂. 高速铁路双块式无砟轨道车辆荷载动态传递特征[J]. 哈尔滨工业大学学报,2020,52(9): 8-16. doi: 10.11918/201905041

    ZHANG Lushun, ZHAO Guotang. Dynamic transfer characteristics of vehicle load on double-block ballastless track of high-speed railway[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 8-16. doi: 10.11918/201905041
    [15] CHEN Z W, FANG H. Influence of pier settlement on contact behavior between CRTS Ⅱ track and bridge in high-speed railways[J]. Engineering Structures, 2021, 235: 112007.1-112007.12.
    [16] GAO L, ZHAO W Q, HOU B W, et al. Analysis of influencing mechanism of subgrade frost heave on vehicle-track dynamic system[J]. Applied Sciences, 2020, 10(22): 8097. doi: 10.3390/app10228097
    [17] CAI X P, LIANG Y K, XIN T, et al. Assessing the effects of subgrade frost heave on vehicle dynamic behaviors on high-speed railway[J]. Cold Regions Science and Technology, 2019, 158: 95-105. doi: 10.1016/j.coldregions.2018.11.009
    [18] 钟阳龙,马超智,高亮,等. 基于车辆响应的无砟轨道路基不均匀沉降评价指标理论研究[J]. 工程力学,2021,38(12): 147-157. doi: 10.6052/j.issn.1000-4750.2020.11.0854

    ZHONG Yanglong, MA Chaozhi, GAO Liang, et al. Theoretical research on evaluation index of uneven settlement of ballastless track subgrade based on vehicle response[J]. Engineering Mechanics, 2021, 38(12): 147-157. doi: 10.6052/j.issn.1000-4750.2020.11.0854
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  231
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-11-02
  • 刊出日期:  2022-05-26

目录

    /

    返回文章
    返回