• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

中低速磁浮车岔耦合振动研究

吴会超 罗建利 周文 王永刚 高峰 崔涛 石俊杰

吴会超, 罗建利, 周文, 王永刚, 高峰, 崔涛, 石俊杰. 中低速磁浮车岔耦合振动研究[J]. 西南交通大学学报, 2022, 57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829
引用本文: 吴会超, 罗建利, 周文, 王永刚, 高峰, 崔涛, 石俊杰. 中低速磁浮车岔耦合振动研究[J]. 西南交通大学学报, 2022, 57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829
WU Huichao, LUO Jianli, ZHOU Wen, WANG Yonggang, GAO Feng, CUI Tao, SHI Junjie. Coupled Vibration Between Low-Medium Speed Maglev Vehicle and Turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829
Citation: WU Huichao, LUO Jianli, ZHOU Wen, WANG Yonggang, GAO Feng, CUI Tao, SHI Junjie. Coupled Vibration Between Low-Medium Speed Maglev Vehicle and Turnout[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 483-489. doi: 10.3969/j.issn.0258-2724.20210829

中低速磁浮车岔耦合振动研究

doi: 10.3969/j.issn.0258-2724.20210829
基金项目: 国家重点研发计划(2016YFB1200601)
详细信息
    作者简介:

    吴会超(1980—),男,高级工程师,博士,研究方向为车辆系统动力学及其疲劳强度,E-mail:48346484@qq.com

  • 中图分类号: U260.11

Coupled Vibration Between Low-Medium Speed Maglev Vehicle and Turnout

  • 摘要:

    为研究中低速磁浮道岔主动梁关键参数对车岔耦合振动的影响,进行了各工况下磁浮道岔主动梁的模态测试,并建立了考虑道岔主动梁弹性振动的车岔耦合动力学模型,对悬浮稳定性进行了分析. 通过仿真与试验对比,对道岔主动梁的模态特征进行了修正,并基于修正后的车岔耦合动力学模型,研究了磁浮道岔主动梁不同设计参数对悬浮稳定性的影响规律. 研究结果表明:中间台车采用50 MN/m的弹性约束进行等效,能够达到比较理想的误差要求;二台车支撑方案相比三台车支撑方案,更容易避开磁浮车岔耦合的共振频率;随着主动梁一阶垂向弯曲频率的不断增大,悬浮控制参数的稳定区间越小,当道岔主动梁垂向弯曲频率大于12 Hz时,更容易出现车岔耦合振动现象;随着道岔主动梁刚度的增加,悬浮控制参数的稳定范围越小;增加道岔主动梁结构阻尼比不能解决车岔耦合共振问题,只能降低振动幅值大小;随着道岔主动梁线密度的增大,越不容易出现车岔共振现象,当线密度低于1 500 kg/m时,悬浮稳定区间将急剧下降;中间台车的等效支撑刚度越大,控制参数的稳定区间越小,但影响幅度不大.

     

  • 图 1  中低速磁浮道岔结构

    Figure 1.  Structure of low-medium speed maglev turnout

    图 2  车岔耦合振动模型

    Figure 2.  Vehicle-turnout coupled vibration model

    图 3  悬浮间隙稳定相轨迹

    Figure 3.  Trajectory of levitating gap in stability phase

    图 4  悬浮间隙失稳相轨迹

    Figure 4.  Trajectory of levitating gap in instability phase

    图 5  两台车与三台车对悬浮稳定性的影响

    Figure 5.  Influence of two-bogie and three-bogie schemes on levitating stability

    图 6  弯曲频率对悬浮稳定性的影响

    Figure 6.  Influence of bending frequency on levitating stability

    图 7  道岔梁刚度对悬浮稳定性的影响

    Figure 7.  Influence of turnout beam stiffness on levitating stability

    图 8  道岔梁阻尼比对悬浮稳定性的影响

    Figure 8.  Influence of the damping ratio of turnout beam on levitating stability

    图 9  道岔梁线密度对悬浮稳定性的影响

    Figure 9.  Influence of the linear density of turnout beam on levitating stability

    图 10  控制参数与悬浮稳定性关系

    Figure 10.  Relationships between control parameters and levitating stability

    表  1  模态测试结果

    Table  1.   Results of modal tests

    试验工况模态振型频率/Hz阻尼比
    1一阶垂向弯曲11.560.012
    2一阶垂向弯曲16.250.059
    3一阶垂向弯曲10.000.030
    下载: 导出CSV

    表  2  模态仿真结果

    Table  2.   Results of modal simulations

    仿真工况模态振型频率/Hz
    自由状态一阶垂向弯曲23.65
    两台车方案一阶垂向弯曲11.48
    三台车方案一阶垂向弯曲15.40
    下载: 导出CSV

    表  3  模态仿真结果

    Table  3.   Results of modal simulations

    试验结果/Hz仿真结果/Hz误差/%
    11.5611.480.7
    16.2515.405.0
    下载: 导出CSV

    表  4  模型参数

    Table  4.   Parameters of model

    符号数值符号数值
    ${M_{\rm{c}}}$24000 kg${C_{\rm{s}}}$6 kN·s/m
    ${I_{\rm{c}}}$84 620 kg·m2${L_{\rm{s}}}$2.46 m
    ${M_{\rm{e}}}$1 774 kg${L_{\rm{e}}}$1.39 m
    ${I_{\rm{e}}}$1 312 kg·m2${K_{\rm{b}}}$50 MN/m
    ${K_{\rm{s}}}$0.08 MN/m${C_{\rm{b}}}$2 kN·s/m
    下载: 导出CSV
  • [1] 翟婉明,赵春发. 磁浮车辆/轨道系统动力学(Ⅰ): 磁/轨相互作用及稳定性[J]. 机械工程学报,2005,41(7): 1-10. doi: 10.3321/j.issn:0577-6686.2005.07.001

    ZHAI Wanming, ZHAO Chunfa. Dynamics of maglev vehicle/guideway systems (Ⅰ)−magnet /rail interaction and system stability[J]. Chinese Journal of Mechanical Engineering, 2005, 41(7): 1-10. doi: 10.3321/j.issn:0577-6686.2005.07.001
    [2] 李小珍,王党雄,耿杰,等. F轨对中低速磁浮列车-桥梁系统竖向耦合振动的影响研究[J]. 土木工程学报,2017,50(4): 97-106.

    LI Xiaozhen, WANG Dangxiong, GENG Jie, et al. Study on the influence of F-rail in vertical coupling vibration of low-medium speed maglev train-bridge system[J]. China Civil Engineering Journal, 2017, 50(4): 97-106.
    [3] 王连春,李金辉,周丹峰,等. 磁浮列车-桥梁耦合自激振动机理分析与仿真验证[J]. 振动与冲击,2017,36(18): 13-19,55.

    WANG Lianchun, LI Jinhui, ZHOU Danfeng, et al. Principle analysis and simulation verification on the vehicle-bridge coupled self-excited vibration of maglevs[J]. Journal of Vibration And Shock, 2017, 36(18): 13-19,55.
    [4] 赵春发,翟婉明. 常导电磁悬浮动态特性研究[J]. 西南交通大学学报,2004,39(4): 464-468.

    ZHAO Chunfa, ZHAI Wanming. Dynamic characteristics of electromagnetic levitation systems[J]. Journal of Southwest Jiaotong University, 2004, 39(4): 464-468.
    [5] 罗华军,吴志会,佟来生,等. 中低速磁浮交通车岔耦合振动研究[J]. 电力机车与城轨车辆,2018,41(1): 5-8.

    LUO Huajun, WU Zhihui, TONG Laisheng, et al. Research on vehicle and turnout coupling vibration for mid-low speed maglev[J]. Electric Locomotives & Mass Transit Vehicles, 2018, 41(1): 5-8.
    [6] 姜卫利,高芒芒. 轨道梁参数对磁浮车-高架桥垂向耦合动力响应的影响研究[J]. 中国铁道科学,2004,25(3): 71-75. doi: 10.3321/j.issn:1001-4632.2004.03.015

    JIANG Weili, GAO Mangmang. Study of the effect of track beam parameters on vertical coupled dynamic response of maglev vehicle-viaduct[J]. China Railway Science, 2004, 25(3): 71-75. doi: 10.3321/j.issn:1001-4632.2004.03.015
    [7] 汪科任,罗世辉,马卫华,等. 磁浮列车静悬浮车轨耦合振动对比分析[J]. 西南交通大学学报,2020,55(2): 282-289. doi: 10.3969/j.issn.0258-2724.20170891

    WANG Keren, LUO Shihui, MA Weihua, et al. Vehicle-guideway coupling vibration comparative analysis for maglev vehicles while standing still[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 282-289. doi: 10.3969/j.issn.0258-2724.20170891
    [8] KIM, K J, HAN J B, HAN H S, et al. Coupled vibration analysis of maglev vehicle-guideway while standing still or moving at low speeds[J]. Vehicle System Dynamics, 2015, 53(4): 587-601. doi: 10.1080/00423114.2015.1013039
    [9] MIN D J, JUNG M R, KIM M Y, et al. Dynamic interaction analysis of maglev-guideway system based on a 3D full vehicle model[J]. International Journal of Structural Stability and Dynamics, 2017, 17(1): 1750006.1-1750006.39.
    [10] HAN J B, HAN H S, LEE J M, et al. Dynamic modeling and simulation of EMS maglev vehicle to evaluate the levitation stability and operational safety over an elastic segmented switch track[J]. Journal of Mechanical Science and Technology, 2018, 32(7): 2987-2998. doi: 10.1007/s12206-018-0602-1
    [11] LI J H, LI J, ZHOU D F, et al. The active control of maglev stationary self-excited vibration with a virtual energy harvester[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2942-2951. doi: 10.1109/TIE.2014.2364788
    [12] LI J H, LI J, ZHOU D F, et al. The modeling and analysis for the self-excited vibration of the maglev vehicle-bridge interaction system[J]. Mathematical Problems in Engineering, 2015, 2015: 709583.1-709583.10.
    [13] 翟婉明,赵春发,蔡成标. 磁浮列车与轮轨高速列车对线桥动力作用的比较研究[J]. 交通运输工程学报,2001,1(1): 7-12. doi: 10.3321/j.issn:1671-1637.2001.01.002

    ZHAI Wanming, ZHAO Chunfa, CAI Chengbiao. On the comparison of dynamic effects on bridges of maglev trains with high-speed wheel/rail trains[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 7-12. doi: 10.3321/j.issn:1671-1637.2001.01.002
    [14] 施晓红,佘龙华,常文森. EMS磁浮列车车/轨耦合系统的分岔现象研究[J]. 中国铁道科学,2004,36(5): 634-640.

    SHI Xiaohong, SHE Longhua, CHANG Wensen. The bifurcation analysis of the EMS maglev vehicle-coupled-guideway system[J]. Acta Mechanica Sinica, 2004, 36(5): 634-640.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  156
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 修回日期:  2021-12-29
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回