• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

轨道交通领域新能源再生技术研究现状与展望

吴小平 张祖涛 潘亚嘉 漆令飞 张庭生 郝大宁

吴小平, 张祖涛, 潘亚嘉, 漆令飞, 张庭生, 郝大宁. 轨道交通领域新能源再生技术研究现状与展望[J]. 西南交通大学学报, 2023, 58(5): 1180-1193, 1202. doi: 10.3969/j.issn.0258-2724.20210788
引用本文: 吴小平, 张祖涛, 潘亚嘉, 漆令飞, 张庭生, 郝大宁. 轨道交通领域新能源再生技术研究现状与展望[J]. 西南交通大学学报, 2023, 58(5): 1180-1193, 1202. doi: 10.3969/j.issn.0258-2724.20210788
WU Xiaoping, ZHANG Zutao, PAN Yajia, QI Lingfei, ZHANG Tingsheng, HAO Daning. Research Status and Prospect of New Energy Regeneration Technology in Rail Transit Field[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1180-1193, 1202. doi: 10.3969/j.issn.0258-2724.20210788
Citation: WU Xiaoping, ZHANG Zutao, PAN Yajia, QI Lingfei, ZHANG Tingsheng, HAO Daning. Research Status and Prospect of New Energy Regeneration Technology in Rail Transit Field[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 1180-1193, 1202. doi: 10.3969/j.issn.0258-2724.20210788

轨道交通领域新能源再生技术研究现状与展望

doi: 10.3969/j.issn.0258-2724.20210788
基金项目: 国家自然科学基金(51975490)
详细信息
    作者简介:

    吴小平(1984—),男,讲师,研究方向为重载铁路轨道能量采集及储存,E-mail:wuxiaoping@swjtu.edu.cn

    通讯作者:

    张祖涛(1974—),男,教授,博士生导师,研究方向为机械能采集及其存储技术,E-mail:zzt@swjtu.edu.cn

  • 中图分类号: U239.4

Research Status and Prospect of New Energy Regeneration Technology in Rail Transit Field

  • 摘要:

    近年来,铁路轨道沿线的智能监测设备建设、轨道交通领域的环境新能源再生等新兴技术受到了广泛关注. 新能源再生技术的基本原理是通过捕获环境清洁能源并将获得的能量转化为电能,为各类智能传感器、交通信号装置、监控设备等正常运行提供电能. 目前,轨道交通领域的各种新能源再生技术在国内外已有许多研究成果,包括风能采集、热能采集、太阳能采集、声能采集、制动能采集以及振动能采集. 其中,振动能采集是轨道交通领域受关注程度最高、研究最为深入的一种新能源再生技术,其主要能量采集形式包括电磁式、压电式、摩擦式以及液压式. 通过对研究内容及现状的总结和梳理,归纳了现有技术问题和工程应用挑战:包括稳定性、耐用性、经济性、能量大小、运动放大、可靠性方面. 随着技术的逐渐成熟,新能源再生技术的实际工程应用将促进轨道交通领域的智能化和可持续化发展.

     

  • 图 1  轨道交通领域新能源再生技术路线

    Figure 1.  Technical route of new energy regeneration in rail transit field

    图 2  安装在列车车顶的风能收集装置[23]

    Figure 2.  Wind energy harvesting device installed on train roof

    图 3  用于采集高速铁路隧道活塞风的风能采集系统[24]

    Figure 3.  Wind energy harvesting system for collecting piston wind of high-speed railway tunnel

    图 4  收集地铁隧道风能的电磁压电混合式采集器

    Figure 4.  Electromagnetic-piezoelectric harvester for collecting wind energy in the subway tunnel

    图 5  应用于机车转向架的热能收集原理

    Figure 5.  Principle of heat energy collection applied to rolling stock

    图 6  轨道热能采集系统

    Figure 6.  Track thermal energy harvesting system

    图 7  铁路系统便携式太阳能采集系统

    Figure 7.  Portable solar energy harvesting system in railroad

    图 8  用于高速铁路的声能收集噪声屏障

    Figure 8.  Renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways

    图 9  交流铁路变电站再生制动能量收集智能策略

    Figure 9.  Intelligent strategy for regenerative braking energy harvesting in AC electrical railway substation

    图 10  轨道摩擦纳米发电机模型

    Figure 10.  Model of nano generator with rail friction

    图 11  轨道液压能量收集系统

    Figure 11.  Rail hydraulic energy collection system

    图 12  轨道交通新能源再生研究年度发文量

    Figure 12.  Annual publications of rail energy harvesting research

    图 13  轨道交通能量采集研究关键词共现

    Figure 13.  Co-occurrence of keywords in energy collection of rail transit

    图 14  2000年—2020年轨道交通能量采集研究英文文献突现词图谱

    Figure 14.  Atlas of emergent words on energy collection of rail transit study in English literature ( year 2000–2020)

    图 15  轨道新能源再生技术应用

    Figure 15.  Application of energy harvesting technology in railway system

    表  1  基于电磁转换的RVEH不同结构能量采集对比

    Table  1.   Energy acquisition comparison of different structures of RVEH based on electromagnetic conversion

    研究者结构形式频率/
    Hz
    负载/
    Ω
    输出
    电压/V
    效率/功率
    Zhang 等[51]齿条齿轮13最大值 58.0
    Wu 等[53]滚珠丝杠23平均值 4.055.40%
    Pan 等[54]锥齿轮2826.61 W
    Gao 等[55]单摆系统4.7263 mW
    Dotti 等[56]单摆系统4.05~6 W
    下载: 导出CSV

    表  2  部分基于压电式的RVEH不同结构能量采集结果

    Table  2.   Energy collection results of different structures of RVEH based on piezoelectricity

    研究者结构形式频率/Hz负载/kΩ输出电压/V输出功率/mW
    Mouapi 等[65]悬臂式26.01110.000
    Fu 等[66]固定式50.0100040.016
    Hou 等[67]堆叠式1.81.090
    Yuan 等[68]圆鼓式40000.100
    下载: 导出CSV

    表  3  前15个轨道交通新能源再生研究高频关键词

    Table  3.   Top 15 effective keywords on rail energy-related studies

    序号关键词频次/次
    1energy harvester80
    2energy harvesting83
    3performance23
    4generating electricity23
    5algorithm19
    6energy consumption19
    7vibration energy harvesting18
    8environmental impact15
    9circuit13
    10optimization12
    11efficiency12
    12energy storage12
    13simulation9
    14electromagnetic7
    15generator6
    下载: 导出CSV
  • [1] XIONG J Y, SHEN Z Y. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29.
    [2] KANG C J, SCHNEIDER S, WENNER M, et al. Development of design and construction of high-speed railway bridges in Germany[J]. Engineering Structures, 2018, 163: 184-196. doi: 10.1016/j.engstruct.2018.02.059
    [3] LI L S Z, YANG F X, CUI C T. High-speed rail and tourism in China: an urban agglomeration perspective[J]. International Journal of Tourism Research, 2019, 21(1): 45-60. doi: 10.1002/jtr.2240
    [4] LIU S L, WAN Y L, HA H K, et al. Impact of high-speed rail network development on airport traffic and traffic distribution: evidence from China and Japan[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 115-135. doi: 10.1016/j.tra.2019.07.015
    [5] JING G Q, SIAHKOUHI M, QIAN K, et al. Development of a field condition monitoring system in high speed railway turnout[J]. Measurement, 2021, 169: 108358.1-108358.13.
    [6] AN B L, GAO L, XIN T, et al. A novel approach of identifying railway track rail’s modal frequency from wheel-rail excitation and its application in high-speed railway monitoring[J]. IEEE Access, 1809,7: 180986-180997.
    [7] ENTEZAMI M, WESTON P, STEWART E, et al. Lineside and on-board monitoring techniques for infrastructure and rolling stock on high-speed lines[J]. International Journal of Railway Technology, 2016, 5(4): 49-77. doi: 10.4203/ijrt.5.4.3
    [8] 王玉泽,王森荣. 高速铁路无砟轨道监测技术[J]. 铁道标准设计,2015,59(8): 1-9. doi: 10.13238/j.issn.1004-2954.2015.08.001

    WANG Yuze, WANG Senrong. Monitoring technique for ballastless track of high-speed railway[J]. Railway Standard Design, 2015, 59(8): 1-9. doi: 10.13238/j.issn.1004-2954.2015.08.001
    [9] YÜKSEL K, KINET D, MOEYAERT V, et al. Railway monitoring system using optical fiber grating accelerometers[J]. Smart Materials and Structures, 2018, 27(10): 105033.1-105033.10.
    [10] LEONE G R, MAGRINI M, MORONI D, et al. A smart device for monitoring railway tracks in remote areas[C]//2016 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM). Reggio Calabria: IEEE, 2016: 1-5.
    [11] O’CONNORS M, ZHANG Y L, et al. Long-term performance assessment of the Telegraph Road Bridge using a permanent wireless monitoring system and automated statistical process control analytics[J]. Structure and Infrastructure Engineering, 2017, 13(5): 604-624. doi: 10.1080/15732479.2016.1171883
    [12] BERNAL E, SPIRYAGIN M, COLE C. Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: a review[J]. IEEE Sensors Journal, 2019, 19(1): 4-24. doi: 10.1109/JSEN.2018.2875160
    [13] 王辉. 车载式轨道监测系统运用分析及其WEB软件设计[J]. 上海铁道科技,2008(2): 49-51. doi: 10.3969/j.issn.1673-7652.2008.02.024
    [14] CAMMARANO A, SPENZA D, PETRIOLI C. Energy-harvesting WSNs for structural health monitoring of underground train tunnels[C]// 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). [S.l.]: IEEE, 2013: 9-10.
    [15] GONCHIGSUMLAA K, KIM Y I, BAYARSAIKHAN P. Design and experiment of energy harvesting power supply for wireless sensor network in freight train monitoring[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(6): 1135-1142. doi: 10.1007/s12541-019-00290-y
    [16] LEWIS R W, MADDISON S, STEWART E J C. An extensible framework architecture for wireless condition monitoring applications for railway rolling stock[C]// 6th IET Conference on Railway Condition Monitoring (RCM 2014). Birmingham: IET Conference Publications, 2014: 1-6.
    [17] GONZÁLEZ-GIL A, PALACIN R, BATTY P. Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. doi: 10.1016/j.enconman.2013.06.039
    [18] BOSSO N, MAGELLI M, ZAMPIERI N. Application of low-power energy harvesting solutions in the railway field: a review[J]. Vehicle System Dynamics, 2021, 59(6): 841-871. doi: 10.1080/00423114.2020.1726973
    [19] 孙威,刘亚男. 高效集风式隧道风能发电装置设计与研究[J]. 应用能源技术,2017(10): 44-47. doi: 10.3969/j.issn.1009-3230.2017.10.014

    SUN Wei, LIU Yanan. DesignandResearch of electric generating device in the form of efficient windy energy collecting of tunnel[J]. Applied Energy Technology, 2017(10): 44-47. doi: 10.3969/j.issn.1009-3230.2017.10.014
    [20] 程耀庆. 基于微型压电能量采集器的无线风速监测节点[D]. 重庆: 重庆大学, 2014.
    [21] 马江. 风电在铁路上应用的设想[J]. 京铁科技通讯:太原刊,2004(4): 21-22.
    [22] 路成强. 铁路货运车辆的双系统供电装置研究与设计[D]. 大连: 大连交通大学, 2018.
    [23] NURMANOVA V, BAGHERI M, PHUNG T, et al. Feasibility study on wind energy harvesting system implementation in moving trains[J]. Electrical Engineering, 2018, 100(3): 1837-1845. doi: 10.1007/s00202-017-0664-6
    [24] PAN H Y, LI H, ZHANG T S, et al. A portable renewable wind energy harvesting system integrated S-rotor and H-rotor for self-powered applications in high-speed railway tunnels[J]. Energy Conversion and Management, 2019, 196: 56-68. doi: 10.1016/j.enconman.2019.05.115
    [25] GUO Z J, LIU T H, XU K, et al. Parametric analysis and optimization of a simple wind turbine in high speed railway tunnels[J]. Renewable Energy, 2020, 161: 825-835. doi: 10.1016/j.renene.2020.07.099
    [26] ZHENG P, QI L F, SUN M D, et al. A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels[J]. Energy, 2021, 227: 120446.1-120446.17.
    [27] AHN D, CHOI K. Performance evaluation of thermoelectric energy harvesting system on operating rolling stock[J]. Micromachines, 2018, 9(7): 00359.1-00359.12.
    [28] GAO M Y, SU C G, CONG J L, et al. Harvesting thermoelectric energy from railway track[J]. Energy, 2019, 180: 315-329. doi: 10.1016/j.energy.2019.05.087
    [29] RUSCELLI A L, CECCHETTI G, CASTOLDI P. Energy harvesting for on-board railway systems[C]//2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Naples: [s.n.], 2017: 397-402.
    [30] HAO D N, ZHANG T S, GUO L, et al. A high-efficiency, portable solar energy-harvesting system based on a foldable-wings mechanism for self-powered applications in railways[J]. Energy Technology, 2021, 9(4): 2000794.1-2000794.17.
    [31] KRALOV I, TERZIEVA S, IGNATOV I. Analysis of methods and mems for acoustic energy harvesting with application in railway noise reduction[J]. Romanian Review Precision Mechanics, Optics and Mechatronics, 2011(40): 123-128.
    [32] NOH H M. Acoustic energy harvesting using piezoelectric generator for railway environmental noise[J]. Advances in Mechanical Engineering, 2018, 10(7): 168781401878505.1-168781401878505.9.
    [33] WANG Y, ZHU X, ZHANG T S, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film[J]. Applied Energy, 2018, 230: 52-61. doi: 10.1016/j.apenergy.2018.08.080
    [34] JIANG Y, LIU J Q, TIAN W, et al. Energy harvesting for the electrification of railway stations: getting a charge from the regenerative braking of trains[J]. IEEE Electrification Magazine, 2014, 2(3): 39-48. doi: 10.1109/MELE.2014.2333561
    [35] KALEYBAR H J, KOJABADI H M, BRENNA M, et al. An intelligent strategy for regenerative braking energy harvesting in AC electrical railway substation[C]//2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Bangalore: IEEE International Conference Publications , 2017: 391-396.
    [36] 翟婉明. 车辆-轨道耦合动力学·上册[M]. 4版. 北京: 科学出版社, 2014: 106-115.
    [37] GAO M Y, LI Y W, LU J, et al. Condition monitoring of urban rail transit by local energy harvesting[J]. International Journal of Distributed Sensor Networks, 2018, 14(11): 155014771881446.1-155014771881446.16.
    [38] DE PASQUALE G, SOMÀ A, ZAMPIERI N. Design, simulation, and testing of energy harvesters with magnetic suspensions for the generation of electricity from freight train vibrations[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(4): 1-9.
    [39] 欧阳冬,张继业,张卫华. 能量回馈式主动悬架研究[J]. 机械与电子,2008,26(2): 7-10. doi: 10.3969/j.issn.1001-2257.2008.02.002

    OUYANG Dong, ZHANG Jiye, ZHANG Weihua. Self-powered active suspension for vehicle[J]. Machinery & Electronics, 2008, 26(2): 7-10. doi: 10.3969/j.issn.1001-2257.2008.02.002
    [40] 董彦辰,张业伟,陈立群. 惯容器非线性减振与能量采集一体化模型动力学分析[J]. 应用数学和力学,2019,40(9): 968-979.

    DONG Yanchen, ZHANG Yewei, CHEN Liqun. Dynamic analysis of the nonlinear vibration absorber-energy harvester integration model with inerters[J]. Applied Mathematics and Mechanics, 2019, 40(9): 968-979.
    [41] 刘双双. 基于麦弗逊悬架减振器柱风致振动能量回收研究[D]. 青岛: 青岛理工大学, 2018.
    [42] 吴子英,位强,师文涵,等. 双稳态减速带能量捕获装置动力学特性研究[J]. 机械科学与技术,2019,38(9): 1357-1365. doi: 10.13433/j.cnki.1003-8728.20180318

    WU Ziying, WEI Qiang, SHI Wenhan, et al. Exploring dynamic characteristics of bi-stable speed bump energy harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1357-1365. doi: 10.13433/j.cnki.1003-8728.20180318
    [43] 朱子豪,杨俭,袁天辰,等. 汽车行驶减振带振动发电仿真研究[J]. 计算机仿真,2016,33(5): 152-155. doi: 10.3969/j.issn.1006-9348.2016.05.032

    ZHU Zihao, YANG Jian, YUAN Tianchen, et al. Simulation study on vibration power generation of vehicle driving through speed bump[J]. Computer Simulation, 2016, 33(5): 152-155. doi: 10.3969/j.issn.1006-9348.2016.05.032
    [44] 孔凡国,吴冠霖. 电磁式公路减速带发电装置理论研究[J]. 机械设计与制造,2014(4): 76-78. doi: 10.3969/j.issn.1001-3997.2014.04.024

    KONG Fanguo, WU Guanlin. Theoretical research of speed controlling and electricity generating humps by electromagnetic[J]. Machinery Design & Manufacture, 2014(4): 76-78. doi: 10.3969/j.issn.1001-3997.2014.04.024
    [45] GAO M Y, WANG P, CAO Y, et al. Design and verification of a rail-borne energy harvester for powering wireless sensor networks in the railway industry[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1596-1609.
    [46] TIAN J Y, FENG H H, CHEN Y F, et al. Research on coupling transfer characteristics of vibration energy of free piston linear generator[J]. Journal of Beijing Institute of Technology, 2020, 29(4): 556-567.
    [47] TEHRANI M G, GATTI G, BRENNAN M J, et al. Energy harvesting from train vibrations[C]//Proceeding of the 11th International Conference on Vibration Problems. Crete: [s.n.], 2013: 9-12.
    [48] POURGHODRAT A, NELSON C A, PHILLIPS K J, et al. Improving an energy harvesting device for railroad safety applications[C]//Proc SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011. San Diego: [s. n.], 2011: 297-305.
    [49] KALAAGI M, SEETHARAMDOO D. Electromagnetic energy harvesting systems in the railway environment: state of the art and proposal of a novel metamaterial energy harvester[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). Krakow: IEEE, 2019: 1-5.
    [50] COSTANZO L, VITELLI M, PAN Y, et al. Maximizing the power extraction from train suspension energy harvesting system[C]//Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim: [s.n.], 2019: 1-7.
    [51] ZHANG X T, PAN H Y, QI L F, et al. A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads[J]. Applied Energy, 2017, 204: 1535-1543. doi: 10.1016/j.apenergy.2017.04.064
    [52] PAN Y, GUO S J, JIANG R J, et al. Performance evaluation of train suspension energy harvesting shock absorber on railway vehicle dynamics[C]//Proceedings of ASME 2018 Dynamic Systems and Control Conference. Atlanta: [s.n.], 2018, 3: 1-6.
    [53] WU X P, QI L F, ZHANG T S, et al. A novel kinetic energy harvester using vibration rectification mechanism for self-powered applications in railway[J]. Energy Conversion and Management, 2021, 228: 113720.1-113720.12. doi: 10.1016/j.enconman.2020.113720
    [54] PAN Y, LIN T, QIAN F, et al. Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation[J]. Applied Energy, 2019, 247: 309-321. doi: 10.1016/j.apenergy.2019.03.051
    [55] GAO M Y, CONG J L, XIAO J L, et al. Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport[J]. Applied Energy, 2020, 257: 113969.1-113969.19.
    [56] DOTTI F E, SOSA M D. Pendulum systems for harvesting vibration energy from railroad tracks and sleepers during the passage of a high-speed train: a feasibility evaluation[J]. Theoretical and Applied Mechanics Letters, 2019, 9(4): 229-235. doi: 10.1016/j.taml.2019.03.005
    [57] ABDELKAREEM M A A, XU L, ALI M K A, et al. Vibration energy harvesting in automotive suspension system: a detailed review[J]. Applied Energy, 2018, 229: 672-699. doi: 10.1016/j.apenergy.2018.08.030
    [58] 闫泽涛,王学东. 基于压电式能量转换的微型振动能量采集器在物联网轨道交通中的应用[J]. 微处理机,2019,40(5): 48-52,59. doi: 10.3969/j.issn.1002-2279.2019.05.012

    YAN Zetao, WANG Xuedong. Application of miniature vibration energy collector based on piezoelectric energy conversion in IoT rail transit[J]. Microprocessors, 2019, 40(5): 48-52,59. doi: 10.3969/j.issn.1002-2279.2019.05.012
    [59] 袁天辰. 基于车辆运行的轨道振动能量回收系统研究[D]. 上海: 上海工程技术大学, 2014.
    [60] 杨沥. 压电式轨道振动能量采集方法与非线性研究[D]. 上海: 上海工程技术大学, 2020.
    [61] ZHAI W M, LIU P F, LIN J H, et al. Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h[J]. International Journal of Rail Transportation, 2015, 3(1): 1-16. doi: 10.1080/23248378.2014.992819
    [62] PETRIAEV A. The vibration impact of heavy freight train on the roadbed[J]. Procedia Engineering, 2016, 143: 1136-1143. doi: 10.1016/j.proeng.2016.06.143
    [63] LI T, SU Q, KAEWUNRUEN S. Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track-soil dynamic interactions[J]. Construction and Building Materials, 2020, 260: 119936.1-119936.15. doi: 10.1016/j.conbuildmat.2020.119936
    [64] NELSON C A, PLATT S R, ALBRECHT D, et al. Power harvesting for railroad track health monitoring using piezoelectric and inductive devices[C]//Proc SPIE 6928, Active and Passive Smart Structures and Integrated Systems 2008. San Diego: [s.n.], 2008: 198-206.
    [65] MOUAPI A, HAKEM N, KANDIL N, et al. Energy harvesting design for autonomous Wireless Sensors Network applied to trains[J]. 2016 IEEE International Ultrasonics Symposium (IUS), 2016, 1: 1-4.
    [66] FU H L, SONG W Z, QIN Y, et al. Broadband vibration energy harvesting from underground trains for self-powered condition monitoring[C]//2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). Krakow: IEEE, 2019: 1-5.
    [67] HOU W Q, ZHENG Y, GUO W, et al. Piezoelectric vibration energy harvesting for rail transit bridge with steel-spring floating slab track system[J]. Journal of Cleaner Production, 2021, 291: 125283.1-125283.15.
    [68] YUAN T C, YANG J, SONG R G, et al. Vibration energy harvesting system for railroad safety based on running vehicles[J]. Smart Materials and Structures, 2014, 23(12): 125046.1-125046.15.
    [69] GENG L, BIAN S, LI T, et al. Application of triboelectric nanogenerator in the railway system[C]//International Conference on Electrical and Information Technologies for Rail Transportation. Singapore: Springer, 2017: 895-904.
    [70] MI J, XU L, GUO S J, et al. Suspension performance and energy harvesting property study of a novel railway vehicle bogie with the hydraulic-electromagnetic energy-regenerative shock absorber[C]//SAE Technical Paper Series. Warrendale: SAE International, 2017: 1-12.
    [71] NELSON C A, POURGHODRAT A, FATEH M. Energy harvesting from vertical deflection of railroad track using a hydraulic system for improving railroad track safety[C]//Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition. Denver: [s.n.], 2012: 259-266.
    [72] 王中林, 杨进, 杨亚, 等. 一种基于摩擦纳米发电机的多自由度能量采集装置: CN201310298069.2[P], 2013
    [73] LIU W L, WANG Z, WANG G, et al. Integrated charge excitation triboelectric nanogenerator[J]. Nature Communications, 2019, 1(10): 1426.1-1426.9.
    [74] WANG Z L, JIANG T, XU L. Toward the blue energy dream by triboelectric nanogenerator networks[J]. Nano Energy, 2017, 39: 9-23. doi: 10.1016/j.nanoen.2017.06.035
    [75] SHEN W, HUANG H L, PANG Y, et al. Review of the energy saving hydraulic system based on common pressure rail[J]. IEEE Access, 2017, 5: 655-669. doi: 10.1109/ACCESS.2017.2648642
    [76] GONG J, ZHANG D Q, GUO Y, et al. Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system[J]. Applied Energy, 2019, 233/234: 724-734. doi: 10.1016/j.apenergy.2018.10.066
    [77] SHI H, YUE Y Y, WANG H T, et al. Design and performance analysis of human walking induced energy recovery system by means of hydraulic energy conversion and storage[J]. Energy Conversion and Management, 2020, 217: 113008.1-113008.14.
    [78] GAO M Y, WANG P, WANG Y F, et al. Self-powered ZigBee wireless sensor nodes for railway condition monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 900-909. doi: 10.1109/TITS.2017.2709346
    [79] HADAS Z, SMILEK J, RUBES O. Energy harvesting from passing train as source of energy for autonomous trackside objects[J]. MATEC Web of Conferences, 2018, 1: 251-256.
    [80] JIN L, DENG W L, SU Y C, et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system[J]. Nano Energy, 2017, 38: 185-192. doi: 10.1016/j.nanoen.2017.05.018
    [81] WANG L, LUO G X, JIANG Z D, et al. Broadband vibration energy harvesting for wireless sensor node power supply in train container[J]. Review of Scientific Instruments, 2019, 90(12): 125003.1-125003.10.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  870
  • HTML全文浏览量:  158
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2022-02-25
  • 网络出版日期:  2022-12-17
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回