Research Status and Prospect of New Energy Regeneration Technology in Rail Transit Field
-
摘要:
近年来,铁路轨道沿线的智能监测设备建设、轨道交通领域的环境新能源再生等新兴技术受到了广泛关注. 新能源再生技术的基本原理是通过捕获环境清洁能源并将获得的能量转化为电能,为各类智能传感器、交通信号装置、监控设备等正常运行提供电能. 目前,轨道交通领域的各种新能源再生技术在国内外已有许多研究成果,包括风能采集、热能采集、太阳能采集、声能采集、制动能采集以及振动能采集. 其中,振动能采集是轨道交通领域受关注程度最高、研究最为深入的一种新能源再生技术,其主要能量采集形式包括电磁式、压电式、摩擦式以及液压式. 通过对研究内容及现状的总结和梳理,归纳了现有技术问题和工程应用挑战:包括稳定性、耐用性、经济性、能量大小、运动放大、可靠性方面. 随着技术的逐渐成熟,新能源再生技术的实际工程应用将促进轨道交通领域的智能化和可持续化发展.
Abstract:In recent years, the construction of intelligent monitoring equipment along railways and the environmental regeneration of new energy in the field of rail transit have attracted extensive attention. The basic principle of new energy regeneration technology is to capture clean environmental energy and convert the obtained energy into electricity to provide electricity for the normal operation of various intelligent sensors, traffic signal devices, and monitoring equipment. Many research achievements in various new energy regeneration technologies have been made in the field of rail transit worldwide, including wind, heat, solar, sound, brake, and vibration energy harvesting. Of these, vibration energy collection is a new energy regeneration technology with the highest degree of relevancy and the most in-depth research in the field of rail transit. The main forms of energy collection include electromagnetic, piezoelectric, friction, and hydraulic. By summarizing and sorting current research results, the existing technical problems and engineering application challenges can be summarized, including stability, durability, economy, energy size, motion amplification, and reliability. With the gradual maturity of such technology, the practical engineering applications of new energy regeneration technologies will promote intelligent and sustainable development in the field of rail transit.
-
Key words:
- rail transit /
- energy harvesting /
- research status /
- trend and prospect
-
图 2 安装在列车车顶的风能收集装置[23]
Figure 2. Wind energy harvesting device installed on train roof
图 3 用于采集高速铁路隧道活塞风的风能采集系统[24]
Figure 3. Wind energy harvesting system for collecting piston wind of high-speed railway tunnel
表 1 基于电磁转换的RVEH不同结构能量采集对比
Table 1. Energy acquisition comparison of different structures of RVEH based on electromagnetic conversion
表 2 部分基于压电式的RVEH不同结构能量采集结果
Table 2. Energy collection results of different structures of RVEH based on piezoelectricity
表 3 前15个轨道交通新能源再生研究高频关键词
Table 3. Top 15 effective keywords on rail energy-related studies
序号 关键词 频次/次 1 energy harvester 80 2 energy harvesting 83 3 performance 23 4 generating electricity 23 5 algorithm 19 6 energy consumption 19 7 vibration energy harvesting 18 8 environmental impact 15 9 circuit 13 10 optimization 12 11 efficiency 12 12 energy storage 12 13 simulation 9 14 electromagnetic 7 15 generator 6 -
[1] XIONG J Y, SHEN Z Y. Rise and future development of Chinese high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 6-29. [2] KANG C J, SCHNEIDER S, WENNER M, et al. Development of design and construction of high-speed railway bridges in Germany[J]. Engineering Structures, 2018, 163: 184-196. doi: 10.1016/j.engstruct.2018.02.059 [3] LI L S Z, YANG F X, CUI C T. High-speed rail and tourism in China: an urban agglomeration perspective[J]. International Journal of Tourism Research, 2019, 21(1): 45-60. doi: 10.1002/jtr.2240 [4] LIU S L, WAN Y L, HA H K, et al. Impact of high-speed rail network development on airport traffic and traffic distribution: evidence from China and Japan[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 115-135. doi: 10.1016/j.tra.2019.07.015 [5] JING G Q, SIAHKOUHI M, QIAN K, et al. Development of a field condition monitoring system in high speed railway turnout[J]. Measurement, 2021, 169: 108358.1-108358.13. [6] AN B L, GAO L, XIN T, et al. A novel approach of identifying railway track rail’s modal frequency from wheel-rail excitation and its application in high-speed railway monitoring[J]. IEEE Access, 1809,7: 180986-180997. [7] ENTEZAMI M, WESTON P, STEWART E, et al. Lineside and on-board monitoring techniques for infrastructure and rolling stock on high-speed lines[J]. International Journal of Railway Technology, 2016, 5(4): 49-77. doi: 10.4203/ijrt.5.4.3 [8] 王玉泽,王森荣. 高速铁路无砟轨道监测技术[J]. 铁道标准设计,2015,59(8): 1-9. doi: 10.13238/j.issn.1004-2954.2015.08.001WANG Yuze, WANG Senrong. Monitoring technique for ballastless track of high-speed railway[J]. Railway Standard Design, 2015, 59(8): 1-9. doi: 10.13238/j.issn.1004-2954.2015.08.001 [9] YÜKSEL K, KINET D, MOEYAERT V, et al. Railway monitoring system using optical fiber grating accelerometers[J]. Smart Materials and Structures, 2018, 27(10): 105033.1-105033.10. [10] LEONE G R, MAGRINI M, MORONI D, et al. A smart device for monitoring railway tracks in remote areas[C]//2016 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM). Reggio Calabria: IEEE, 2016: 1-5. [11] O’CONNORS M, ZHANG Y L, et al. Long-term performance assessment of the Telegraph Road Bridge using a permanent wireless monitoring system and automated statistical process control analytics[J]. Structure and Infrastructure Engineering, 2017, 13(5): 604-624. doi: 10.1080/15732479.2016.1171883 [12] BERNAL E, SPIRYAGIN M, COLE C. Onboard condition monitoring sensors, systems and techniques for freight railway vehicles: a review[J]. IEEE Sensors Journal, 2019, 19(1): 4-24. doi: 10.1109/JSEN.2018.2875160 [13] 王辉. 车载式轨道监测系统运用分析及其WEB软件设计[J]. 上海铁道科技,2008(2): 49-51. doi: 10.3969/j.issn.1673-7652.2008.02.024 [14] CAMMARANO A, SPENZA D, PETRIOLI C. Energy-harvesting WSNs for structural health monitoring of underground train tunnels[C]// 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). [S.l.]: IEEE, 2013: 9-10. [15] GONCHIGSUMLAA K, KIM Y I, BAYARSAIKHAN P. Design and experiment of energy harvesting power supply for wireless sensor network in freight train monitoring[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21(6): 1135-1142. doi: 10.1007/s12541-019-00290-y [16] LEWIS R W, MADDISON S, STEWART E J C. An extensible framework architecture for wireless condition monitoring applications for railway rolling stock[C]// 6th IET Conference on Railway Condition Monitoring (RCM 2014). Birmingham: IET Conference Publications, 2014: 1-6. [17] GONZÁLEZ-GIL A, PALACIN R, BATTY P. Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy[J]. Energy Conversion and Management, 2013, 75: 374-388. doi: 10.1016/j.enconman.2013.06.039 [18] BOSSO N, MAGELLI M, ZAMPIERI N. Application of low-power energy harvesting solutions in the railway field: a review[J]. Vehicle System Dynamics, 2021, 59(6): 841-871. doi: 10.1080/00423114.2020.1726973 [19] 孙威,刘亚男. 高效集风式隧道风能发电装置设计与研究[J]. 应用能源技术,2017(10): 44-47. doi: 10.3969/j.issn.1009-3230.2017.10.014SUN Wei, LIU Yanan. DesignandResearch of electric generating device in the form of efficient windy energy collecting of tunnel[J]. Applied Energy Technology, 2017(10): 44-47. doi: 10.3969/j.issn.1009-3230.2017.10.014 [20] 程耀庆. 基于微型压电能量采集器的无线风速监测节点[D]. 重庆: 重庆大学, 2014. [21] 马江. 风电在铁路上应用的设想[J]. 京铁科技通讯:太原刊,2004(4): 21-22. [22] 路成强. 铁路货运车辆的双系统供电装置研究与设计[D]. 大连: 大连交通大学, 2018. [23] NURMANOVA V, BAGHERI M, PHUNG T, et al. Feasibility study on wind energy harvesting system implementation in moving trains[J]. Electrical Engineering, 2018, 100(3): 1837-1845. doi: 10.1007/s00202-017-0664-6 [24] PAN H Y, LI H, ZHANG T S, et al. A portable renewable wind energy harvesting system integrated S-rotor and H-rotor for self-powered applications in high-speed railway tunnels[J]. Energy Conversion and Management, 2019, 196: 56-68. doi: 10.1016/j.enconman.2019.05.115 [25] GUO Z J, LIU T H, XU K, et al. Parametric analysis and optimization of a simple wind turbine in high speed railway tunnels[J]. Renewable Energy, 2020, 161: 825-835. doi: 10.1016/j.renene.2020.07.099 [26] ZHENG P, QI L F, SUN M D, et al. A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels[J]. Energy, 2021, 227: 120446.1-120446.17. [27] AHN D, CHOI K. Performance evaluation of thermoelectric energy harvesting system on operating rolling stock[J]. Micromachines, 2018, 9(7): 00359.1-00359.12. [28] GAO M Y, SU C G, CONG J L, et al. Harvesting thermoelectric energy from railway track[J]. Energy, 2019, 180: 315-329. doi: 10.1016/j.energy.2019.05.087 [29] RUSCELLI A L, CECCHETTI G, CASTOLDI P. Energy harvesting for on-board railway systems[C]//2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Naples: [s.n.], 2017: 397-402. [30] HAO D N, ZHANG T S, GUO L, et al. A high-efficiency, portable solar energy-harvesting system based on a foldable-wings mechanism for self-powered applications in railways[J]. Energy Technology, 2021, 9(4): 2000794.1-2000794.17. [31] KRALOV I, TERZIEVA S, IGNATOV I. Analysis of methods and mems for acoustic energy harvesting with application in railway noise reduction[J]. Romanian Review Precision Mechanics, Optics and Mechatronics, 2011(40): 123-128. [32] NOH H M. Acoustic energy harvesting using piezoelectric generator for railway environmental noise[J]. Advances in Mechanical Engineering, 2018, 10(7): 168781401878505.1-168781401878505.9. [33] WANG Y, ZHU X, ZHANG T S, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film[J]. Applied Energy, 2018, 230: 52-61. doi: 10.1016/j.apenergy.2018.08.080 [34] JIANG Y, LIU J Q, TIAN W, et al. Energy harvesting for the electrification of railway stations: getting a charge from the regenerative braking of trains[J]. IEEE Electrification Magazine, 2014, 2(3): 39-48. doi: 10.1109/MELE.2014.2333561 [35] KALEYBAR H J, KOJABADI H M, BRENNA M, et al. An intelligent strategy for regenerative braking energy harvesting in AC electrical railway substation[C]//2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). Bangalore: IEEE International Conference Publications , 2017: 391-396. [36] 翟婉明. 车辆-轨道耦合动力学·上册[M]. 4版. 北京: 科学出版社, 2014: 106-115. [37] GAO M Y, LI Y W, LU J, et al. Condition monitoring of urban rail transit by local energy harvesting[J]. International Journal of Distributed Sensor Networks, 2018, 14(11): 155014771881446.1-155014771881446.16. [38] DE PASQUALE G, SOMÀ A, ZAMPIERI N. Design, simulation, and testing of energy harvesters with magnetic suspensions for the generation of electricity from freight train vibrations[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(4): 1-9. [39] 欧阳冬,张继业,张卫华. 能量回馈式主动悬架研究[J]. 机械与电子,2008,26(2): 7-10. doi: 10.3969/j.issn.1001-2257.2008.02.002OUYANG Dong, ZHANG Jiye, ZHANG Weihua. Self-powered active suspension for vehicle[J]. Machinery & Electronics, 2008, 26(2): 7-10. doi: 10.3969/j.issn.1001-2257.2008.02.002 [40] 董彦辰,张业伟,陈立群. 惯容器非线性减振与能量采集一体化模型动力学分析[J]. 应用数学和力学,2019,40(9): 968-979.DONG Yanchen, ZHANG Yewei, CHEN Liqun. Dynamic analysis of the nonlinear vibration absorber-energy harvester integration model with inerters[J]. Applied Mathematics and Mechanics, 2019, 40(9): 968-979. [41] 刘双双. 基于麦弗逊悬架减振器柱风致振动能量回收研究[D]. 青岛: 青岛理工大学, 2018. [42] 吴子英,位强,师文涵,等. 双稳态减速带能量捕获装置动力学特性研究[J]. 机械科学与技术,2019,38(9): 1357-1365. doi: 10.13433/j.cnki.1003-8728.20180318WU Ziying, WEI Qiang, SHI Wenhan, et al. Exploring dynamic characteristics of bi-stable speed bump energy harvester[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1357-1365. doi: 10.13433/j.cnki.1003-8728.20180318 [43] 朱子豪,杨俭,袁天辰,等. 汽车行驶减振带振动发电仿真研究[J]. 计算机仿真,2016,33(5): 152-155. doi: 10.3969/j.issn.1006-9348.2016.05.032ZHU Zihao, YANG Jian, YUAN Tianchen, et al. Simulation study on vibration power generation of vehicle driving through speed bump[J]. Computer Simulation, 2016, 33(5): 152-155. doi: 10.3969/j.issn.1006-9348.2016.05.032 [44] 孔凡国,吴冠霖. 电磁式公路减速带发电装置理论研究[J]. 机械设计与制造,2014(4): 76-78. doi: 10.3969/j.issn.1001-3997.2014.04.024KONG Fanguo, WU Guanlin. Theoretical research of speed controlling and electricity generating humps by electromagnetic[J]. Machinery Design & Manufacture, 2014(4): 76-78. doi: 10.3969/j.issn.1001-3997.2014.04.024 [45] GAO M Y, WANG P, CAO Y, et al. Design and verification of a rail-borne energy harvester for powering wireless sensor networks in the railway industry[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(6): 1596-1609. [46] TIAN J Y, FENG H H, CHEN Y F, et al. Research on coupling transfer characteristics of vibration energy of free piston linear generator[J]. Journal of Beijing Institute of Technology, 2020, 29(4): 556-567. [47] TEHRANI M G, GATTI G, BRENNAN M J, et al. Energy harvesting from train vibrations[C]//Proceeding of the 11th International Conference on Vibration Problems. Crete: [s.n.], 2013: 9-12. [48] POURGHODRAT A, NELSON C A, PHILLIPS K J, et al. Improving an energy harvesting device for railroad safety applications[C]//Proc SPIE 7977, Active and Passive Smart Structures and Integrated Systems 2011. San Diego: [s. n.], 2011: 297-305. [49] KALAAGI M, SEETHARAMDOO D. Electromagnetic energy harvesting systems in the railway environment: state of the art and proposal of a novel metamaterial energy harvester[C]//2019 13th European Conference on Antennas and Propagation (EuCAP). Krakow: IEEE, 2019: 1-5. [50] COSTANZO L, VITELLI M, PAN Y, et al. Maximizing the power extraction from train suspension energy harvesting system[C]//Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim: [s.n.], 2019: 1-7. [51] ZHANG X T, PAN H Y, QI L F, et al. A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads[J]. Applied Energy, 2017, 204: 1535-1543. doi: 10.1016/j.apenergy.2017.04.064 [52] PAN Y, GUO S J, JIANG R J, et al. Performance evaluation of train suspension energy harvesting shock absorber on railway vehicle dynamics[C]//Proceedings of ASME 2018 Dynamic Systems and Control Conference. Atlanta: [s.n.], 2018, 3: 1-6. [53] WU X P, QI L F, ZHANG T S, et al. A novel kinetic energy harvester using vibration rectification mechanism for self-powered applications in railway[J]. Energy Conversion and Management, 2021, 228: 113720.1-113720.12. doi: 10.1016/j.enconman.2020.113720 [54] PAN Y, LIN T, QIAN F, et al. Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation[J]. Applied Energy, 2019, 247: 309-321. doi: 10.1016/j.apenergy.2019.03.051 [55] GAO M Y, CONG J L, XIAO J L, et al. Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport[J]. Applied Energy, 2020, 257: 113969.1-113969.19. [56] DOTTI F E, SOSA M D. Pendulum systems for harvesting vibration energy from railroad tracks and sleepers during the passage of a high-speed train: a feasibility evaluation[J]. Theoretical and Applied Mechanics Letters, 2019, 9(4): 229-235. doi: 10.1016/j.taml.2019.03.005 [57] ABDELKAREEM M A A, XU L, ALI M K A, et al. Vibration energy harvesting in automotive suspension system: a detailed review[J]. Applied Energy, 2018, 229: 672-699. doi: 10.1016/j.apenergy.2018.08.030 [58] 闫泽涛,王学东. 基于压电式能量转换的微型振动能量采集器在物联网轨道交通中的应用[J]. 微处理机,2019,40(5): 48-52,59. doi: 10.3969/j.issn.1002-2279.2019.05.012YAN Zetao, WANG Xuedong. Application of miniature vibration energy collector based on piezoelectric energy conversion in IoT rail transit[J]. Microprocessors, 2019, 40(5): 48-52,59. doi: 10.3969/j.issn.1002-2279.2019.05.012 [59] 袁天辰. 基于车辆运行的轨道振动能量回收系统研究[D]. 上海: 上海工程技术大学, 2014. [60] 杨沥. 压电式轨道振动能量采集方法与非线性研究[D]. 上海: 上海工程技术大学, 2020. [61] ZHAI W M, LIU P F, LIN J H, et al. Experimental investigation on vibration behaviour of a CRH train at speed of 350 km/h[J]. International Journal of Rail Transportation, 2015, 3(1): 1-16. doi: 10.1080/23248378.2014.992819 [62] PETRIAEV A. The vibration impact of heavy freight train on the roadbed[J]. Procedia Engineering, 2016, 143: 1136-1143. doi: 10.1016/j.proeng.2016.06.143 [63] LI T, SU Q, KAEWUNRUEN S. Seismic metamaterial barriers for ground vibration mitigation in railways considering the train-track-soil dynamic interactions[J]. Construction and Building Materials, 2020, 260: 119936.1-119936.15. doi: 10.1016/j.conbuildmat.2020.119936 [64] NELSON C A, PLATT S R, ALBRECHT D, et al. Power harvesting for railroad track health monitoring using piezoelectric and inductive devices[C]//Proc SPIE 6928, Active and Passive Smart Structures and Integrated Systems 2008. San Diego: [s.n.], 2008: 198-206. [65] MOUAPI A, HAKEM N, KANDIL N, et al. Energy harvesting design for autonomous Wireless Sensors Network applied to trains[J]. 2016 IEEE International Ultrasonics Symposium (IUS), 2016, 1: 1-4. [66] FU H L, SONG W Z, QIN Y, et al. Broadband vibration energy harvesting from underground trains for self-powered condition monitoring[C]//2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS). Krakow: IEEE, 2019: 1-5. [67] HOU W Q, ZHENG Y, GUO W, et al. Piezoelectric vibration energy harvesting for rail transit bridge with steel-spring floating slab track system[J]. Journal of Cleaner Production, 2021, 291: 125283.1-125283.15. [68] YUAN T C, YANG J, SONG R G, et al. Vibration energy harvesting system for railroad safety based on running vehicles[J]. Smart Materials and Structures, 2014, 23(12): 125046.1-125046.15. [69] GENG L, BIAN S, LI T, et al. Application of triboelectric nanogenerator in the railway system[C]//International Conference on Electrical and Information Technologies for Rail Transportation. Singapore: Springer, 2017: 895-904. [70] MI J, XU L, GUO S J, et al. Suspension performance and energy harvesting property study of a novel railway vehicle bogie with the hydraulic-electromagnetic energy-regenerative shock absorber[C]//SAE Technical Paper Series. Warrendale: SAE International, 2017: 1-12. [71] NELSON C A, POURGHODRAT A, FATEH M. Energy harvesting from vertical deflection of railroad track using a hydraulic system for improving railroad track safety[C]//Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition. Denver: [s.n.], 2012: 259-266. [72] 王中林, 杨进, 杨亚, 等. 一种基于摩擦纳米发电机的多自由度能量采集装置: CN201310298069.2[P], 2013 [73] LIU W L, WANG Z, WANG G, et al. Integrated charge excitation triboelectric nanogenerator[J]. Nature Communications, 2019, 1(10): 1426.1-1426.9. [74] WANG Z L, JIANG T, XU L. Toward the blue energy dream by triboelectric nanogenerator networks[J]. Nano Energy, 2017, 39: 9-23. doi: 10.1016/j.nanoen.2017.06.035 [75] SHEN W, HUANG H L, PANG Y, et al. Review of the energy saving hydraulic system based on common pressure rail[J]. IEEE Access, 2017, 5: 655-669. doi: 10.1109/ACCESS.2017.2648642 [76] GONG J, ZHANG D Q, GUO Y, et al. Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system[J]. Applied Energy, 2019, 233/234: 724-734. doi: 10.1016/j.apenergy.2018.10.066 [77] SHI H, YUE Y Y, WANG H T, et al. Design and performance analysis of human walking induced energy recovery system by means of hydraulic energy conversion and storage[J]. Energy Conversion and Management, 2020, 217: 113008.1-113008.14. [78] GAO M Y, WANG P, WANG Y F, et al. Self-powered ZigBee wireless sensor nodes for railway condition monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 900-909. doi: 10.1109/TITS.2017.2709346 [79] HADAS Z, SMILEK J, RUBES O. Energy harvesting from passing train as source of energy for autonomous trackside objects[J]. MATEC Web of Conferences, 2018, 1: 251-256. [80] JIN L, DENG W L, SU Y C, et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system[J]. Nano Energy, 2017, 38: 185-192. doi: 10.1016/j.nanoen.2017.05.018 [81] WANG L, LUO G X, JIANG Z D, et al. Broadband vibration energy harvesting for wireless sensor node power supply in train container[J]. Review of Scientific Instruments, 2019, 90(12): 125003.1-125003.10.