• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

循环荷载下钢管混凝土与钢筋黏结的试验研究

孙阳 徐振扬 宋德威 王翀霄 杨攀

孙阳, 徐振扬, 宋德威, 王翀霄, 杨攀. 循环荷载下钢管混凝土与钢筋黏结的试验研究[J]. 西南交通大学学报, 2023, 58(3): 638-644, 695. doi: 10.3969/j.issn.0258-2724.20210733
引用本文: 孙阳, 徐振扬, 宋德威, 王翀霄, 杨攀. 循环荷载下钢管混凝土与钢筋黏结的试验研究[J]. 西南交通大学学报, 2023, 58(3): 638-644, 695. doi: 10.3969/j.issn.0258-2724.20210733
SUN Yang, XU Zhenyang, SONG Dewei, WANG Chongxiao, YANG Pan. Experimental Study on Bond Characteristics Between Concrete-Filled Steel Tube and Steel Bar Under Cyclic Loading[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 638-644, 695. doi: 10.3969/j.issn.0258-2724.20210733
Citation: SUN Yang, XU Zhenyang, SONG Dewei, WANG Chongxiao, YANG Pan. Experimental Study on Bond Characteristics Between Concrete-Filled Steel Tube and Steel Bar Under Cyclic Loading[J]. Journal of Southwest Jiaotong University, 2023, 58(3): 638-644, 695. doi: 10.3969/j.issn.0258-2724.20210733

循环荷载下钢管混凝土与钢筋黏结的试验研究

doi: 10.3969/j.issn.0258-2724.20210733
基金项目: 国家自然科学基金(41672257);中央高校基本科研业务费资助(B210203068)
详细信息
    作者简介:

    孙阳(1979—),男,副教授,博士,研究方向为材料结构耐久性,E-mail: sunyang_hhu@hhu.edu.cn

  • 中图分类号: TU398.9

Experimental Study on Bond Characteristics Between Concrete-Filled Steel Tube and Steel Bar Under Cyclic Loading

  • 摘要:

    为探究循环荷载下配筋钢管混凝土构件黏结锚固性能,对配筋钢管混凝土试件开展了单调加载和循环加载试验. 通过单调加载试验,对比分析了黏结力与滑移量之间的响应关系;基于单调加载试验结果,对若干配筋钢管混凝土试件在单轴循环荷载作用下的黏结特性进行了试验研究,考虑包括箍筋配置、黏结长度、钢筋直径、加载次数等因素对黏结性能的影响规律,分析了不同试件黏结力的退化机制及其破坏模式. 结果表明:箍筋提高了试件承受循环荷载作用的能力,配筋钢管混凝土试件的黏结力和延性随黏结长度、钢筋直径的增加而增大,配筋钢管混凝土试件中钢筋的黏结力及延性随着前期承受循环荷载的加载次数的增加而降低,配筋钢管混凝土黏结破坏时整个黏结区域相对比较平滑,变形肋印迹不明显.

     

  • 图 1  带肋钢筋几何特性

    Figure 1.  Geometric characteristics of ribbed steel bars

    图 2  试件及横截面

    Figure 2.  Cross sections of test specimen

    图 3  试件加载

    Figure 3.  Loading of specimen

    图 4  单调加载时试件S11、S22与S1、S2滑移量-黏结力曲线

    Figure 4.  Slip distance-bonding force curves of CFST specimens S1, S2 and ordinary reinforced concrete specimens S11 and S22 under monotonic loading

    图 5  S3、S4加载周次-滑移量关系曲线

    Figure 5.  Loading times-slip distance curve of S3 and S4

    图 6  循环加载S5、S6加载周次-滑移量关系曲线

    Figure 6.  Loading times-slip distance curves of S5 and S6

    图 7  循环加载S7、S8加载周次-滑移量关系曲线

    Figure 7.  Loading times-slip distance curves of S7 and S8

    图 8  循环加载S9、S10加载周次-滑移量关系曲线

    Figure 8.  Loading times-slip distance curves of S9 and S10

    图 9  单调加载S9、S10滑移量-黏结力关系曲线

    Figure 9.  Slip distance-bonding force curves of S9 and S10

    图 10  黏结区域破坏

    Figure 10.  Bonding zone failure

    图 11  循环荷载作用下试件黏结性能退化机制

    Figure 11.  Mechanism of bond degradation of specimens under cyclic loading

    表  1  钢筋几何和力学特性

    Table  1.   Geometric and mechanical properties of steel bars

    钢筋类型d/mmhr/mmlr/mmcr/mmα/(°)屈服强度/MPa抗拉强度/MPa弹性模量/GPa
    带肋钢筋 A161.415.49.557.2335455210
    带肋钢筋 B221.821.210.556.9335455210
    光圆钢筋(箍筋)6300420200
    下载: 导出CSV

    表  2  试验方案与参数

    Table  2.   Test plan and parameters

    加载方式试验
    目标
    试件编号试件类型d/
    mm
    l/mm是否配置箍筋加载周次加载过程
    单调加载滑移量-黏结力S1钢管混凝土1648
    S21648
    S11普通钢筋
    混凝土
    1648
    S221648
    箍筋配置影响S31648循环加载至拔出Tmax=24 kN, Tmin=4 kN
    S41648循环加载至拔出Tmax=24 kN, Tmin=4 kN→Tmax=28 kN, Tmin=4 kN
    黏结长度影响S51648循环加载至拔出Tmax=24 kN, Tmin=4 kN→Tmax=28 kN, Tmin=4 kN
    S61664循环加载至拔出Tmax=24 kN, Tmin=4 kN→Tmax=28 kN,
    Tmin=4 kN→Tmax=32 kN, Tmin=4 kN
    循环加载钢筋直径影响S7钢管混凝土1648循环加载至拔出Tmax=24 kN, Tmin=4 kN→Tmax=28 kN, Tmin=4 kN
    S82248循环加载至拔出Tmax=24 kN, Tmin=4 kN→Tmax=28 kN, Tmin=4 kN
    循环次数影响S91648先 500 次循环加载,后单调加载至拔出Tmax=24 kN, Tmin=4 kN→单调加载拔出
    S101648先 10 000 次循环加载,后单调加载至拔出Tmax=24 kN, Tmin=4 kN→单调加载拔出
    下载: 导出CSV
  • [1] 郝兆峰,张戎令,王起才,等. 钢管混凝土缺陷对徐变性能的影响[J]. 复合材料学报,2020,37(5): 1191-1199.

    HAO Zhaofeng, ZHANG Rongling, WANG Qicai, et al. Effect of concrete filled steel tube defect on creep property[J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1191-1199.
    [2] 陈宝春,韦建刚,周俊,等. 我国钢管混凝土拱桥应用现状与展望[J]. 土木工程学报,2017,50(6): 50-61.

    CHEN Baochun, WEI Jiangang, ZHOU Jun, et al. Application of concrete-filled steel tube arch bridges in China: current status and prospects[J]. China Civil Engineering Journal, 2017, 50(6): 50-61.
    [3] 王浩祚. 内配螺旋箍筋方钢管超高强混凝土柱轴压及抗震性能研究[D]. 泉州: 华侨大学, 2020.
    [4] ELREMAILY A, AZIZINAMINI A. Behavior and strength of circular concrete-filled tube columns[J]. Journal of Constructional Steel Research, 2002, 58(12): 1567-1591. doi: 10.1016/S0143-974X(02)00005-6
    [5] ROMERO M L, MOLINER V, ESPINOS A, et al. Fire behavior of axially loaded slender high strength concrete-filled tubular columns[J]. Journal of Constructional Steel Research, 2011, 67(12): 1953-1965. doi: 10.1016/j.jcsr.2011.06.012
    [6] 张玉琢,吕学涛,王微微. 受火后方钢管钢筋混凝土短柱剩余承载力研究[J]. 工程力学,2016,33(11): 113-120. doi: 10.6052/j.issn.1000-4750.2015.03.0244

    ZHANG Yuzhuo, LÜ Xuetao, WANG Weiwei. Post-fire behavior of reinforced concrete-filled square steel tubular stub columns under axially compressive loading[J]. Engineering Mechanics, 2016, 33(11): 113-120. doi: 10.6052/j.issn.1000-4750.2015.03.0244
    [7] 王庆利,车媛,谭鹏宇,等. CFRP-钢管混凝土结构研究的进展与展望[J]. 工程力学,2010,27(增2): 48-60.

    WANG Qingli, CHE Yuan, TAN Pengyu, et al. Progress and prospect in rearch on concrete filled CFRP-steel tubular structures[J]. Engineering Mechanics, 2010, 27(S2): 48-60.
    [8] 张松. 持荷配筋圆钢管混凝土受火后抗冲击性能的数值模拟[D]. 秦皇岛: 燕山大学, 2018.
    [9] LIE T T, IRWIN R J. Fire resistance of rectangular steel columns filled with bar-reinforced concrete[J]. Journal of Structural Engineering, 1995, 121(5): 797-805. doi: 10.1061/(ASCE)0733-9445(1995)121:5(797)
    [10] KODUR V K R, LIE T T. Evaluation of fire resistance of rectangular steel columns filled with fiber-reinforced concrete[J]. Canadian Journal of Civil Engineering, 1997, 24(3): 339-349. doi: 10.1139/l96-114
    [11] XIAMUXI A, HASEGAWA A. Experimental study on reinforcement ratio of RCFT columns under axial compression[J]. Advanced Materials Research, 2011, 250/251/252/253: 3790-3797.
    [12] XIAMUXI A, HASEGAWA A. A study on axial compressive behaviors of reinforced concrete filled tubular steel columns[J]. Journal of Constructional Steel Research, 2012, 76: 144-154. doi: 10.1016/j.jcsr.2012.03.023
    [13] 阿里甫江·夏木西,吐迪买买提·巴克,刘晓蕊. 配筋钢管混凝土短柱中环向箍筋的受力机理[J]. 工程科学与技术,2020,52(4): 77-88.

    ALIFUJIANG Xiamuxi, TUDIMAIMAITI Bake, LIU Xiaorui. Load transfer mechanism of lateral hoops in reinforced concrete filled steel tubular column[J]. Advanced Engineering Sciences, 2020, 52(4): 77-88.
    [14] 尹玉霞,周伟华,王凯. 高温下配筋钢管再生混凝土柱承载力试验研究[J]. 建筑技术,2017,48(12): 1295-1298.

    YIN Yuxia, ZHOU Weihua, WANG Kai. Experimental study of bearing capacity of reinforced steel at high temperatures recycled concrete columns[J]. Architecture Technology, 2017, 48(12): 1295-1298.
    [15] TOMII M, SAKINO K, XIAO Y, et al. Earthquake- resisting hysteretic behavior of reinforced concrete short columns confined by steel tube-experimental results of preliminary research[C]//Proceedings of the International Speciality Conference on Concrete Filled Steel Tubular Structures. Harbin: Harbin Architectual and Civil Engineering Institute, 1985: 119-125.
    [16] 康希良,程耀芳,涂昀,等. 钢管混凝土粘结-滑移性能试验研究及数值分析[J]. 工程力学,2010,27(9): 102-106.

    KANG Xiliang, CHENG Yaofang, TU Yun, et al. Experimental study and numerical analysis of bond-slip performance for concrete filled steel tube[J]. Engineering Mechanics, 2010, 27(9): 102-106.
    [17] 张俊. 薄壁圆钢管高强混凝土受压构件力学性能研究 [D]. 沈阳: 东北大学, 2017.
    [18] CABRERA J G. Deterioration of concrete due to reinforcement steel corrosion[J]. Cement and Concrete Composites, 1996, 18(1): 47-59. doi: 10.1016/0958-9465(95)00043-7
    [19] AUYEUNG Y B, BALAGUR P, CHUNG L. Bond behavior of corroded reinforcement bars[J]. Materials Journal, 2000, 97(2): 214-220.
    [20] PAPAKONSTANTINOU C G, BALAGURU P N, AUYEUNG Y. Influence of FRP confinement on bond behavior of corroded steel reinforcement[J]. Cement and Concrete Composites, 2011, 33(5): 611-621. doi: 10.1016/j.cemconcomp.2011.02.006
    [21] AMLEH L, MIRZA S. Corrosion influence on bond between steel and concrete[J]. ACI Structural Journal, 1999, 96(3): 415-423.
    [22] HARAJLI M, HAMAD B, KARAM K. Bond-slip response of reinforcing bars embedded in plain and fiber concrete[J]. Journal of Materials in Civil Engineering, 2002, 14(6): 503-511. doi: 10.1061/(ASCE)0899-1561(2002)14:6(503)
    [23] BALAZS G L. Fatigue of bond[J]. ACI Materials Journal, 1991, 88(6): 620-630.
    [24] SUN Y, SHEN S L, XIA X H, et al. A numerical approach for predicting shakedown limit in ratcheting behavior of materials[J]. Materials & Design, 2013, 47: 106-114.
    [25] WEN M J, LI H, YU D J, et al. Uniaxial ratcheting behavior of Zircaloy-4 tubes at room temperature[J]. Materials & Design, 2013, 46: 426-434.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  64
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-14
  • 修回日期:  2021-12-14
  • 网络出版日期:  2023-02-11
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回