• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

极端天气下桥塔温致效应及抗裂性能优化

李永乐 黄旭 朱金 张明金

李永乐, 黄旭, 朱金, 张明金. 极端天气下桥塔温致效应及抗裂性能优化[J]. 西南交通大学学报, 2023, 58(5): 975-984, 1036. doi: 10.3969/j.issn.0258-2724.20210680
引用本文: 李永乐, 黄旭, 朱金, 张明金. 极端天气下桥塔温致效应及抗裂性能优化[J]. 西南交通大学学报, 2023, 58(5): 975-984, 1036. doi: 10.3969/j.issn.0258-2724.20210680
LI Yongle, HUANG Xu, ZHU Jin, ZHANG Mingjin. Thermal Effects and Anti-Crack Performance Optimization of Bridge Pylons Under Extreme Weather Conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 975-984, 1036. doi: 10.3969/j.issn.0258-2724.20210680
Citation: LI Yongle, HUANG Xu, ZHU Jin, ZHANG Mingjin. Thermal Effects and Anti-Crack Performance Optimization of Bridge Pylons Under Extreme Weather Conditions[J]. Journal of Southwest Jiaotong University, 2023, 58(5): 975-984, 1036. doi: 10.3969/j.issn.0258-2724.20210680

极端天气下桥塔温致效应及抗裂性能优化

doi: 10.3969/j.issn.0258-2724.20210680
基金项目: 国家自然科学基金区域联合基金(U21A20154);四川省科学技术厅科技计划(2020YJ0080)
详细信息
    作者简介:

    李永乐(1972—),男,教授,博士,研究方向为风-车-桥耦合振动、桥梁风工程,E-mail:lele@swjtu.edu.cn

  • 中图分类号: U443.22

Thermal Effects and Anti-Crack Performance Optimization of Bridge Pylons Under Extreme Weather Conditions

  • 摘要:

    为深入研究我国西部横断山脉地区极端天气下桥塔的温致效应,以某大跨悬索桥为工程背景,分析极端天气下该桥混凝土桥塔的温度场以及温度应力分布特征,并提出相应的抗裂优化措施. 首先,基于桥址区实测数据,提出桥址区极端天气的识别与模拟方法;然后,采用ANSYS有限元软件分析了桥塔的温度分布以及温度应力分布特征;最后,针对桥塔外表面存在开裂风险的问题,提出了2种提高桥塔外表面抗裂性能的优化方案,包括桥塔外表面涂装有机涂料方案和外包超高性能混凝土UHPC (ultra high performance concrete)方案. 结果表明:在强降温天气下,桥塔表面拉应力极值为2.19 MPa,存在较大开裂风险;当采用抗裂优化措施后,两种优化方案均能有效降低混凝土桥塔表面的拉应力极值;对于桥塔外表面涂装有机涂料方案,白色有机涂料优化效果最佳;对于桥塔外包UHPC方案,当UHPC厚度为0.08 m时优化效果最佳. 通过对比2种抗裂优化方案的经济性和施工难易程度,推荐采用白色有机涂料优化方案.

     

  • 图 1  桥塔布置示意(单位:m)

    Figure 1.  Layout of bridge pylon (unit:m)

    图 2  桥址区全自动气象站布置

    Figure 2.  Layout of the automatic meteorological station at the bridge site

    图 3  实测环境温度

    Figure 3.  Measured ambient temperature

    图 4  识别和模拟的强降温天气气温

    Figure 4.  Air temperature of identified and simulated strong cooling weather event

    图 5  边界条件计算

    Figure 5.  Calculation of boundary conditions

    图 6  桥塔有限元模型

    Figure 6.  FE model of the pylon

    图 7  桥塔外表面最大温度时程图

    Figure 7.  Time-history of maximum temperature on the pylon surface

    图 8  桥塔断面温度场分布

    Figure 8.  Temperature field distribution of the pylon cross section

    图 9  桥塔外表面最大拉应力时程

    Figure 9.  Time-history of maximum tensile stress of the pylon cross section

    图 10  桥塔断面应力分布图

    Figure 10.  Stress distribution of cross section of the pylon cross section

    图 11  桥塔外表面涂装有机涂料后的最大拉应力时程

    Figure 11.  Time-history of maximum tensile stress of the pylon surface with organic coating

    图 12  采用有机涂层后桥塔RC层不同深度拉应力值

    Figure 12.  Tensile stress values at different depths of pylon RC with organic coating

    图 13  桥塔表面外包UHPC后最大拉应力时程

    Figure 13.  Time-history of maximum tensile stress of the pylon surface with UHPC

    图 14  采用外包UHPC后桥塔RC层不同深度拉应力值

    Figure 14.  Tensile stress values at different depths of the pylon RC of UHPC

    表  1  两种抗裂优化方案比较

    Table  1.   Comparison between the two anti-crack strategies

    优化方案应力减少量/%物料价格/
    (元•m−2
    PⅣ-1PⅣ-2PⅣ-3
    白色有机涂料15.7615.7019.7172
    覆盖 0.08 m UHPC23.2318.3928.61600
    下载: 导出CSV
  • [1] DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges[J]. Journal of Structural Engineering, 1983, 109(6): 1460-1478. doi: 10.1061/(ASCE)0733-9445(1983)109:6(1460)
    [2] MAMDOUH E, AMIN G. Thermal stresses and cracking of concrete bridges[J]. ACI Structural Journal, 1986, 6(83): 1001-1009.
    [3] SONG X M, MELHEM H, LI J, et al. Effects of solar temperature gradient on long-span concrete box girder during cantilever construction[J]. Journal of Bridge Engineering, 2016, 21(3): 04015061.1-04015061.19.
    [4] 张宁,刘永健,刘江,等. 高原高寒地区H形混凝土桥塔日照温度效应[J]. 交通运输工程学报,2017,17(4): 66-77. doi: 10.3969/j.issn.1671-1637.2017.04.007

    ZHANG Ning, LIU Yongjian, LIU Jiang, et al. Temperature effects of H-shaped concrete pylon in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 66-77. doi: 10.3969/j.issn.1671-1637.2017.04.007
    [5] YANG D H, YI T H, LI H N, et al. Monitoring and analysis of thermal effect on tower displacement in cable-stayed bridge[J]. Measurement, 2018, 115: 249-257. doi: 10.1016/j.measurement.2017.10.036
    [6] MENG Q L, ZHU J S. Fine temperature effect analysis-based time-varying dynamic properties evaluation of long-span suspension bridges in natural environments[J]. Journal of Bridge Engineering, 2018, 23(10): 04018075.1-04018075.19.
    [7] 张清华,马燕,王宝州. 高原环境新型组合桥塔温度场与温度应力特性分析[J]. 桥梁建设,2020,50(5): 30-36. doi: 10.3969/j.issn.1003-4722.2020.05.005

    ZHANG Qinghua, MA Yan, WANG Baozhou. Analysis of temperature field and thermal stress characteristics for a novel composite bridge tower catering for plateau environment[J]. Bridge Construction, 2020, 50(5): 30-36. doi: 10.3969/j.issn.1003-4722.2020.05.005
    [8] 段飞. 大跨度钢桥日照温度场和温度效应研究[D]. 成都: 西南交通大学, 2010.
    [9] ZHOU L R, XIA Y, BROWNJOHN J M W, et al. Temperature analysis of a long-span suspension bridge based on field monitoring and numerical simulation[J]. Journal of Bridge Engineering, 2016, 21(1): 04015027.1-04015027.10. doi: 10.1061/(ASCE)BE.1943-5592.0000786
    [10] (德)凯尔别克. 太阳辐射对桥梁结构的影响[M]. 刘兴法等, 译. 北京: 中国铁道出版社, 1981.
    [11] 高宇. 港珠澳大桥青州航道桥扁平钢箱梁温度场分析[D]. 西安: 长安大学, 2015.
    [12] HUANG X, ZHU J, LI Y. Temperature analysis of steel box girder considering actual wind field[J]. Engineering Structures, 2021, 2021(246): 1-17.
    [13] 陆亚群. 混凝土温度作用中的气象因素分析[D]. 上海: 同济大学, 2007.
    [14] 国家铁路局. 铁路桥涵混凝土结构设计规范: TB 10092—2017[S]. 北京: 中国铁道出版社, 2017.
    [15] XING Z, BEAUCOUR A L, HEBERT R, et al. Aggregate’s influence on thermophysical concrete properties at elevated temperature[J]. Construction and Building Materials, 2015, 95: 18-28.
    [16] LIU H B, CHEN Z H, CHEN B B, et al. Studies on the temperature distribution of steel plates with different paints under solar radiation[J]. Applied Thermal Engineering, 2014, 71(1): 342-354. doi: 10.1016/j.applthermaleng.2014.06.031
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  284
  • HTML全文浏览量:  116
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2022-02-08
  • 网络出版日期:  2023-04-11
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回