Construction Optimization Method for Cable Domes with Alternately Lifting and Tensioning
-
摘要:
为确保索穹顶结构施工成型前索杆内力的平稳变化,提出了交替提升内拉环与张拉最外圈斜索的施工优化方法. 首先,以施工过程中的平均结构应变能最小为优化目标,对内拉环的逐级提升高度进行优化;其次,通过仿真分析得到施工过程中的索杆内力和节点位移,并与仅张拉最外圈斜索的施工方法进行对比. 结果表明:交替提升内拉环与张拉最外圈斜索的施工优化方法可有效减小施工过程中的索杆内力,降幅最大达61.83%,避免了施工成型前索杆内力的大幅波动,且结构位形变化较平缓,相邻施工步的竖向位移差最大为1.43 m,平均结构应变能较低,仅为55.03%,优化效果显著,验证了该优化方法对索穹顶结构施工模拟的适用性.
Abstract:In order to ensure the smooth change of cable-strut internal forces before molding cable domes, a construction optimization method is proposed, focusing on alternately lifting the inner ring and tensioning the outermost diagonal cables. The lifting height of the inner ring is first optimized for minimizing average structural strain energy in the construction process. The cable-strut internal forces and nodal displacements from simulation are compared with those from the construction method with the tensioned outermost diagonal cables. The results show that, alternately lifting the inner ring and tensioning the outermost diagonal cables can effectively reduce the cable-strut internal forces by 61.83%, avoiding sharp fluctuation of cable-strut internal forces before molding. It causes more gentle change of structural configuration with 1.43 m maximum vertical displacement difference between adjacent construction steps, and low average structural strain energy of only 55.03%, which demonstrates its remarkable optimization effect. Thus, the proposed method is applicable to the construction simulation of cable domes.
-
表 1 构件截面面积及初始预应力
Table 1. Section areas and initial prestresses of members
杆件
编号截面面
积/mm2初始预应
力/kN杆件
编号截面面
积/mm2初始预应
力/kNJS1 7260 1551.73 XS3B 9310 1636.83 JS2A 8370 521.39 HS1 10050 1294.26 JS2B 8370 1134.31 HS2 15080 3005.37 JS3A 9310 1829.04 SLH 9896 1551.55 JS3B 9310 1962.96 XLH 8262 171.97 XS1 7260 174.38 NCG 7383 −29.02 XS2A 8370 455.77 CG1 8262 −307.07 XS2B 8370 786.26 CG2A 9896 −509.03 XS3A 9310 1636.76 CG2B 9896 −509.05 表 2 不同方案的施工步骤
Table 2. Construction procedures of different schemes
施工
步骤方案一
(交替提升与张拉)方案二
(仅张拉最外圈斜索)1 XS3 预留3% 张拉长度安装,内拉环与设计标高间距为h1+ h2 + h3 XS3 预留 3% 张拉长度安装 2 内拉环提升 h1 3 张拉 1% 索长 张拉 1% 索长 4 内拉环提升 h2 5 张拉 1% 索长 张拉 1% 索长 6 内拉环提升 h3,达到设计标高 7 XS3 张拉至设计长度 XS3 张拉至设计长度 表 3 不同方案的结果对比
Table 3. Comparison of results between different schemes
方案 μ/% 平均结构
应变能/(kN·m)脊索 斜索 环索 撑杆 一 16.47 38.04 37.88 15.99 230.66 二 43.15 64.29 48.01 35.80 419.18 -
[1] GEIGER D, STEFANIUK A, CHEN D. The design and construction of two cable domes for the Korean Olympics[C]//Proceedings of the IASS Symposium. Osaka: [s.n.], 1986: 265-272. [2] YAN X Y, YANG Y, CHEN Z H, et al. Mechanical properties of a hybrid cable dome under non-uniform snow distribution[J]. Journal of Constructional Steel Research, 2019, 153: 519-532. doi: 10.1016/j.jcsr.2018.10.022 [3] 冯远,向新岸,董石麟,等. 雅安天全体育馆金属屋面索穹顶设计研究[J]. 空间结构,2019,25(1): 3-13.FENG Yuan, XIANG Xinan, DONG Shilin, et al. Design and research on tensegrity type cable dome with metal roof of Ya’an Tianquan Gymnasium[J]. Spatial Structures, 2019, 25(1): 3-13. [4] 冯远,王立维,张彦,等. 成都凤凰山专业足球场结构设计[J]. 建筑结构,2020,50(19): 15-21,14.FENG Yuan, WANG Liwei, ZHANG Yan, et al. Structural design of Chengdu Fenghuangshan professional football field[J]. Building Structure, 2020, 50(19): 15-21,14. [5] XUE S D, GAO Z Y, LI X Y. Research status and prospects of cable domes[J]. Applied Mechanics and Materials, 2011, 94/95/96: 1424-1432. [6] 陈联盟,董石麟,袁行飞. 索穹顶结构施工成形理论分析和试验研究[J]. 土木工程学报,2006,39(11): 33-36,113. doi: 10.3321/j.issn:1000-131X.2006.11.006CHEN Lianmeng, DONG Shilin, YUAN Xingfei. Theoretical and experimental study on the construction of cable domes[J]. China Civil Engineering Journal, 2006, 39(11): 33-36,113. doi: 10.3321/j.issn:1000-131X.2006.11.006 [7] 董石麟,袁行飞,赵宝军,等. 索穹顶结构多种预应力张拉施工方法的全过程分析[J]. 空间结构,2007,13(1): 3-14,25.DONG Shilin, YUAN Xingfei, ZHAO Baojun, et al. Constrution analysis of cable-dome structures pretensioned by different schemes[J]. Spatial Structures, 2007, 13(1): 3-14,25. [8] LIU Z S, WANG Z Q, YOU D Q. Integral hoisting and tension-shaping techniques of Ordos cable dome[J]. Applied Mechanics and Materials, 2012, 170/171/172/173: 3208-3211. [9] 王泽强,程书华,尤德清,等. 索穹顶结构施工技术研究[J]. 建筑结构学报,2012,33(4): 67-76.WANG Zeqiang, CHENG Shuhua, YOU Deqing, et al. Research on construction techniques of cable dome roof[J]. Journal of Building Structures, 2012, 33(4): 67-76. [10] ZHANG A L, SUN C, JIANG Z Q. Experimental study on the construction shape-forming process and static behaviour of a double strut cable dome[J]. Journal of Zhejiang University: Science A, 2018, 19(3): 225-239. doi: 10.1631/jzus.A1700071 [11] 宗钟凌. 刚性屋面索穹顶结构建造技术及试验研究[D]. 南京: 东南大学,2009. [12] 罗斌,郭正兴,高峰. 索穹顶无支架提升牵引施工技术及全过程分析[J]. 建筑结构学报,2012,33(5): 16-22.LUO Bin, GUO Zhengxing, GAO Feng. Research on non-bracket tow-lifting construction technology and complete process analysis of cable dome[J]. Journal of Building Structures, 2012, 33(5): 16-22. [13] DING M M, LUO B, GUO Z X, et al. Integral tow-lifting construction technology of a tensile beam-cable dome[J]. Journal of Zhejiang University: Science A, 2015, 16(12): 935-950. [14] 蒋丰,王晓丽,刘火明,等. 大开口索穹顶巨型桁架带索整体提升技术[J]. 施工技术,2020,49(20): 46-48,75.JIANG Feng, WANG Xiaoli, LIU Huoming, et al. Integral lifting technology of cable dome large truss with large opening[J]. Construction Technology, 2020, 49(20): 46-48,75. [15] 刘小伟. 大跨度索穹顶结构的若干问题研究[D]. 广州: 华南理工大学,2017. [16] 苏延. 复合型索穹顶结构的找力优化及施工仿真分析 [D]. 广州: 华南理工大学,2021. [17] 唐承,郭书祥,莫延彧,等. 应用粒子群-序列二次规划算法的结构可靠性优化[J]. 空军工程大学学报(自然科学版),2016,17(2): 107-111.TANG Cheng, GUO Shuxiang, MO Yanyu, et al. An optimal design of structural reliability based on particle swarm optimization-sequential quadratic programming algorithm[J]. Journal of Air Force Engineering University (Natural Science Edition), 2016, 17(2): 107-111. [18] 姜正荣,刘小伟,石开荣,等. 基于比值更新的索穹顶结构找力分析方法[J]. 西南交通大学学报,2020,55(1): 150-157. doi: 10.3969/j.issn.0258-2724.20180201JIANG Zhengrong, LIU Xiaowei, SHI Kairong, et al. Method of force-finding analysis based on ratio updating for cable domes[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 150-157. doi: 10.3969/j.issn.0258-2724.20180201