• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于几何约束的倾斜影像特征匹配方法

韦春桃 张冬梅

韦春桃, 张冬梅. 基于几何约束的倾斜影像特征匹配方法[J]. 西南交通大学学报, 2024, 59(2): 353-360. doi: 10.3969/j.issn.0258-2724.20210662
引用本文: 韦春桃, 张冬梅. 基于几何约束的倾斜影像特征匹配方法[J]. 西南交通大学学报, 2024, 59(2): 353-360. doi: 10.3969/j.issn.0258-2724.20210662
WEI Chuntao, ZHANG Dongmei. Feature Matching Method of Oblique Images Based on Geometric Constraints[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 353-360. doi: 10.3969/j.issn.0258-2724.20210662
Citation: WEI Chuntao, ZHANG Dongmei. Feature Matching Method of Oblique Images Based on Geometric Constraints[J]. Journal of Southwest Jiaotong University, 2024, 59(2): 353-360. doi: 10.3969/j.issn.0258-2724.20210662

基于几何约束的倾斜影像特征匹配方法

doi: 10.3969/j.issn.0258-2724.20210662
基金项目: 重庆市基础科学与前沿技术研究专项重点项目(cstc2015jcyj BX0023)
详细信息
    作者简介:

    韦春桃(1968—),女,教授,博士,研究方向为摄影测量与遥感,E-mail:gxglwct@163.com

  • 中图分类号: P237

Feature Matching Method of Oblique Images Based on Geometric Constraints

  • 摘要:

    针对倾斜影像视角变换较大、重复纹理导致匹配数量少、匹配精度不高的问题,提出一种适用于倾斜影像的特征点、线分级匹配方法. 首先,用直线提取(检测)算法(LSD)获取影像直线特征,并将直线特征以一定约束进行直线组对,构建直线对区域与改进的SIFT (scale-invariant feature transform)特征描述符进行匹配,使用RANSAC算法剔除误匹配,获得初始匹配结果后再进行核线约束;然后,利用已获得直线对区域进行影像局部纠正,在纠正后的局部影像上采用SIFT匹配并反算回原始影像,利用得到的同名点全局纠正倾斜影像,并进行特征点匹配与采用基于方格的运动统计算法(GMS)剔除误匹配,仍将匹配结果反算回原始影像上;最后,将仿射尺度不变特征变化结果与点拓展匹配结果进行合并,得到最终匹配结果. 试验结果表明:本文方法匹配正确率与经典的仿射不变匹算法(ASIFT)的正确率相差不大,但匹配数量却是ASIFT算法的1倍~3倍.

     

  • 图 1  本文算法整体流程

    Figure 1.  Flowchart of proposed method

    图 2  直线组对[6]

    Figure 2.  Line pairing[6]

    图 3  构建四边形区域

    Figure 3.  Quadrilateral construction

    图 4  灰度共生矩阵

    Figure 4.  Gray-level co-occurrence matrix

    图 5  核线约束

    Figure 5.  Epipolar constraint

    图 6  局部纠正匹配图

    Figure 6.  Local correction matching

    图 7  全局影像纠正

    Figure 7.  Global image correction

    图 8  实验数据

    Figure 8.  Experimental datasets

    图 9  场景实验结果

    Figure 9.  Matching results for different scenes

    图 10  匹配效率比较

    Figure 10.  Comparison of matching efficiency

    表  1  实验统计结果

    Table  1.   Statistic results of experiments

    SIFTHarris-AffineHessian-AffineASIFTSuperGlue本文方法
    项目影像对RANSACGMSRANSACGMSRANSACGMSRANSACGMSGMS
    匹配总数14102003807085020943
    223569360407294239223531682228
    32081218790790243721812168417
    422724160460178912312082235
    555019040023256207443
    616701301602592821086
    正确数100106864880880
    28460220380270226622431602163
    318702090320238320952098302
    419820010176012071992175
    5210104023053193330
    614200025825974
    下载: 导出CSV
  • [1] 余美. 倾斜立体影像匹配若干问题研究[D]. 徐州: 中国矿业大学, 2018.
    [2] LOWE D G. Distinctive image feature from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [3] MA J, CHAN C W, CANTERS F. Fully automatic subpixel image registration of multiangle CHRIS/Proba data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2829-2839.
    [4] MOREL J M, YU G. ASIFT: a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 438-469. doi: 10.1137/080732730
    [5] YU G, MOREL J M. ASIFT: an algorithm for fully affine invariant comparison[J]. Image Processing on Line, 2011, 1: 11-38. doi: 10.5201/ipol.2011.my-asift
    [6] LI K, YAO J. Line segment matching and reconstruction via exploiting coplanar cues[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 125: 33-49. doi: 10.1016/j.isprsjprs.2017.01.006
    [7] GIOIR RAFAEL G V, JAKUBOWICZ J , MOREL J M, et al. LSD: a fast line segment detector with a false detection control[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732.
    [8] FAN B, WU F, HU Z. Robust line matching through line-point invariants[J]. Pattern Recognition, 2012, 45(2): 794-805. doi: 10.1016/j.patcog.2011.08.004
    [9] MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1): 63-86. doi: 10.1023/B:VISI.0000027790.02288.f2
    [10] MIKOLAJCZYK K, TUYTEIAARS T, SCHMID C, et al. A comparison of affine region detectors[J]. International Journal of Computor Vision, 2005, 65: 43-72. doi: 10.1007/s11263-005-3848-x
    [11] 姚国标,邓喀中,艾海滨,等. 倾斜立体影像自动准稠密匹配与三维重建算法[J]. 武汉大学学报(信息科学版),2014,39(7): 843-849.

    YAO Guobiao, DENG Kazhong, AI Haibin, et al. An algorithm of automatic quasi-dense matching and three-dimensional reconstruction for oblique stereo images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 843-849.
    [12] 余美,邓喀中,杨化超,等. 基于WαSH局部特征的立体影像匹配[J]. 中国矿业大学学报,2018,47(3): 685-690.

    YU Mei, DENG Kazhong, YANG Huachao, et al. Stereo images matching based on WαSH local features[J]. Journal of China University of Mining & Technology, 2018, 47(3): 685-690.
    [13] 肖雄武,郭丙轩,李德仁,等. 一种具有仿射不变性的倾斜影像快速匹配方法[J]. 测绘学报,2015,44(4): 414-421.

    XIAO Xiongwu, GUO Bingxuan, LI Deren, et al. A quick and affine invariance matching method for oblique images[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(4): 414-421.
    [14] YU Yinian, HUANG Kaiqi, CHEN Wei, et al. A novel algorithm for view and illumination invariant image matching[J]. IEEE Transactions on Image Processing, 2011, 21(1): 229-240.
    [15] XIAO X W, GUO B X, SHI Y R, et al. Robust and rapid matching of oblique UAV images of urban area[C]//Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Wuhan: SPIE, 2013: 223-230.
    [16] LI K, YAO J , XIA M H, et al. Joint point and line segment matching on wide-baseline stereo images[C]//2016 IEEE Winter Conference on Applications of Computer Vision (WACV). New York: IEEE, 2016: 1-9.
    [17] 陈敏,朱庆,何海清,等. 面向城区宽基线立体像对视角变化的结构自适应特征点匹配[J]. 测绘学报,2019,48(9): 1129-1140.

    CHEN Min, ZHU Qing, HE Haiqing, et al. Structureadaptive feature point matching for urban area wide-baseline images with viewpoint variation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9): 1129-1140.
    [18] 张平,王竞雪. 直线对几何特征约束的近景影像特征匹配[J]. 遥感信息,2020,35(4): 124-132.

    ZHANG Ping, WANG Jingxue. Line matching for close-range images with geometry features of line pairs[J]. Remote Sensing Information, 2020, 35(4): 124-132.
    [19] RAGURAM R, CHUM O, POLLEFEYS M, et al. USAC: a universal framework for random sample consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 2022-2038.
    [20] 王竞雪,朱庆,王伟玺. 顾及拓扑关系的立体影像直线特征可靠匹配算法[J]. 测绘学报,2017,46(11): 1850-1858.

    WANG Jingxue, ZHU Qing, WANG Weixi. Reliable line matching algorithm for stereo images with topological relationship[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1850-1858.
    [21] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2564-2571.
    [22] LEVI G, HASSNER T. LATCH: learned arrangements of three patch codes[C]//2016 IEEE Winter Conference on Applications of Computer Vision (WACV). NewYork: IEEE, 2016: 1-9.
    [23] 李卓,刘洁瑜,李辉,等. 基于ORB-LATCH的特征检测与描述算法[J]. 计算机应用,2017,37(6): 1759-1762.

    LI Zhuo, LIU Jieyu, LI Hui, et al. Feature detection and description algorithm based on ORB-LATCH[J]. Journal of Computer Applications, 2017, 37(6): 1759-1762.
    [24] BIAN J W, LIN W Y, MATSUSHITA Y, et al. GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[J]. International Journal of Computer Vision, 2020, 128(6): 1580-1593. doi: 10.1007/s11263-019-01280-3
    [25] MIKOLAJCZYK K, SCHMID C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
    [26] SONG W H, JUNG H G, GWAK I Y, et al. Oblique aerial image matching based on iterative simulation and homography evaluation[J]. Pattern Recognition, 2019, 87: 317-331.
    [27] 杨蒙蒙,张爱华. 基于灰度共生矩阵和同步正交匹配追踪的分形图像压缩[J]. 计算机应用,2021,41(5): 1445-1449.

    YANG Mengmeng, ZHANG Aihua. Fractal image compression based on gray-level co-occurrence matrix and simultaneous orthogonal matching pursuit[J]. Journal of Computer Applications, 2021, 41(5): 1445-1449.
    [28] SARLIN P E, DETONE D, MALISIEWICZ T, et al. Superglue: Learning feature matching with graph neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4938-4947.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  342
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12
  • 修回日期:  2021-12-02
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2022-03-31

目录

    /

    返回文章
    返回