• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

砂土拱效应滑移面几何轮廓与松动土压力分析

周思危 冷伍明 聂如松 李亚峰 狄宏规 陈伟庚

周思危, 冷伍明, 聂如松, 李亚峰, 狄宏规, 陈伟庚. 砂土拱效应滑移面几何轮廓与松动土压力分析[J]. 西南交通大学学报, 2023, 58(6): 1413-1422. doi: 10.3969/j.issn.0258-2724.20210651
引用本文: 周思危, 冷伍明, 聂如松, 李亚峰, 狄宏规, 陈伟庚. 砂土拱效应滑移面几何轮廓与松动土压力分析[J]. 西南交通大学学报, 2023, 58(6): 1413-1422. doi: 10.3969/j.issn.0258-2724.20210651
ZHOU Siwei, LENG Wuming, NIE Rusong, LI Yafeng, DI Honggui, CHEN Weigeng. Geometric Contour of Slip Surfaces and Loosening Earth Pressure in Sand Under Soil-Arching Effect[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1413-1422. doi: 10.3969/j.issn.0258-2724.20210651
Citation: ZHOU Siwei, LENG Wuming, NIE Rusong, LI Yafeng, DI Honggui, CHEN Weigeng. Geometric Contour of Slip Surfaces and Loosening Earth Pressure in Sand Under Soil-Arching Effect[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1413-1422. doi: 10.3969/j.issn.0258-2724.20210651

砂土拱效应滑移面几何轮廓与松动土压力分析

doi: 10.3969/j.issn.0258-2724.20210651
基金项目: 国家自然科学基金(51878666, 51978672)
详细信息
    作者简介:

    周思危(1991—),男,博士研究生,研究方向为道路与铁道工程,岩土与地下工程,E-mail:194801027@csu.edu.cn

    通讯作者:

    聂如松(1980—),男,副教授,博士生导师,研究方向为铁路路基工程与桥梁桩基础,E-mail:nierusong97@163.com

  • 中图分类号: U216.41

Geometric Contour of Slip Surfaces and Loosening Earth Pressure in Sand Under Soil-Arching Effect

  • 摘要:

    土拱效应本质上是由于土体内部松动引起的应力转移现象,土体松动过程伴随着滑移面的形成和延展,但目前针对滑移面几何轮廓、松动影响范围以及考虑松动区动态演变对松动土压力的影响等方面的研究尤待深入. 利用Trapdoor试验对砂土拱效应滑移面轮廓及演变开展研究,获得滑移面几何轮廓及其演变模式在不同填土高度、活动门下移和宽度以及砂料密度下的表征区别. 通过界定滑移面影响范围内松动核心区域,提出基于核心区几何形状的松动应力计算方法. 分析松动应力-活动门下移曲线特征,以揭示最大、最小拱状态条件下的曲线特征随填土高度、活动门下移和宽度以及砂密度的变化规律. 研究结果表明:1) 滑移面轮廓随活动门下移的演化过程为三角形—子弹头形—椭圆形,填土高度越高,活动门宽度越小,初始和次级滑移面轮廓越尖锐;2) 初始、次级滑移面高度随活动门下移递增,第Ⅲ级滑移面拐点高度随活动门下移递减, 初始、次级滑移面夹角随活动门下移先增后减,第Ⅲ级滑移面上半夹角与下半夹角均随活动门下移递增;3) 随着填土高度的增加,松动核心区形状演化过程为三角形—梯形—矩形,核心区高度为填土高度的0.5倍~0.8倍,核心区夹角与核心区面积均随内摩擦角的增加近似线性递减;4) 基于核心区面积的松动应力计算方法相比,Terzaghi等方法更具适用性,且其适用于计算低填土试验组的临界应力和高填土试验组的极限应力. 研究成果为更精确地描述砂土松动区的位移破坏模式及其界定标准以及松动区稳定性评价提供参考.

     

  • 图 1  Trapdoor模型试验箱结构示意 (单位:cm)

    Figure 1.  Trapdoor test box structure (unit: cm)

    图 2  砂颗粒级配

    Figure 2.  Grading of sand particles

    图 3  滑移面轮廓典型演变模式

    Figure 3.  Typical evolution modes of slip surface contour

    图 4  滑移面典型轮廓及其等值线(粗砂, Dr=0.860)

    Figure 4.  Typical contours of slip surface and its contour line (coarse sand, Dr = 0.860)

    图 5  滑移面几何轮廓特征参数释义

    Figure 5.  Interpretation of geometric contour parameters of slip surface

    图 6  滑移面高度随活动门下移变化

    Figure 6.  Change of slip surface height with downward movement of trapdoor

    图 7  第Ⅲ级滑移面拐点高度随活动门下移变化

    Figure 7.  Change of inflection point height of level-Ⅲ slip surface with downward movement of trapdoor

    图 8  滑移面夹角随活动门下移的变化

    Figure 8.  Change of angles of slip surface with downward movement of trapdoor

    图 9  2类典型试验组中松动核心区形态

    Figure 9.  Morphology of core loosening zones in two types of typical test groups

    图 10  松动应力-活动门下移归一化曲线

    Figure 10.  Normalization curves of loosening stress-downward movement of trapdoor

    图 11  松动应力计算方法对比

    Figure 11.  Comparison of loosening stress calculation methods

    图 12  松动应力-活动门下移近似计算

    Figure 12.  Approximate calculation of loosening stress-downward movement of trapdoor

    表  1  砂物理力学参数

    Table  1.   Physical and mechanical parameters of sand

    种类d50/mm不均匀
    系数 cu
    曲率系数 cc最大干密度
    ρdmax/(kg·m−3
    最小干密度
    ρdmin/(kg·m−3
    Dr内摩擦角 φ/(°)
    细砂0.272.670.95171913180.20831.4
    中砂0.322.571.34161613540.60734.5
    粗砂0.532.920.84170314390.86038.4
    下载: 导出CSV

    表  2  Trapdoor试验组工况

    Table  2.   Trapdoor test conditions

    试验组工况种类h/mw/m传感器埋设间距/m
    A1细砂0.40.20.1
    A20.60.30.1
    A30.80.40.2
    A40.60.20.1
    A50.90.30.2
    A61.20.40.2
    B1中砂0.40.20.1
    B20.60.30.1
    B30.80.40.2
    B40.60.20.1
    B50.90.30.2
    B61.20.40.2
    C1粗砂0.40.20.1
    C20.60.30.1
    C30.80.40.2
    C40.60.20.1
    C50.90.30.2
    C61.20.40.2
    下载: 导出CSV

    表  3  稳定滑移面高度-内摩擦角

    Table  3.   Stable slip surface height-internal friction angle m

    φ/(°)h=0.4 m, w=0.2 mh=0.8 m, w=0.4 mh=0.6 m, w=0.2 mh=0.9 m, w=0.3 m
    hs1hs2hs3hs31hs1hs2hs3hs31hs1hs2hs3hs31hs1hs2hs3hs31
    31.4 0.225 0.250 0.400 0.625 0.750 0.363 0.425 0.275 0.523 0.875 0.675
    34.5 0.238 0.625 0.788 0.725 0.352 0.338 0.463 0.600 0.425 0.312
    38.4 0.225 0.263 0.688 0.763 0.413 0.488 0.525 0.450 0.337 0.575 0.900 0.708
      注:部分试验未形成次级或第Ⅲ级滑移面,以“—”表示.
    下载: 导出CSV

    表  4  松动核心区几何特征

    Table  4.   Geometric characteristics of core loosening area

    φ/(°)h/mw/mhd/mψ/(°)Acor/m2Acor/SAEFD
    31.40.40.20.4081.50.0360.45
    1.20.40.8588.50.3850.80
    34.50.80.40.7588.50.2310.72
    0.60.20.5585.00.0570.48
    38.40.60.20.6083.50.0560.47
    1.20.40.8089.00.3750.78
    下载: 导出CSV

    表  5  临界、极限状态特征

    Table  5.   Characteristics of critical and ultimate states

    φ/
    (°)
    h=0.4 m, w=0.2 m h=0.8 m, w=0.4 m h=0.6 m, w=0.2 m h=1.2 m, w=0.4 m
    σcri/
    σ0
    σult/
    σ0
    ΔScri/w/
    %
    ΔSult/w/
    %
    σcri/
    σ0
    σult/
    σ0
    ΔScri/w/
    %
    ΔSult/w/
    %
    σcri/
    σ0
    σult/
    σ0
    ΔScri/w/
    %
    ΔSult/w/
    %
    σcri/
    σ0
    σult/
    σ0
    ΔScri/w/
    %
    ΔSult/w/
    %
    31.40.430.811.211 0.330.900.55.7 0.390.892.014 0.340.931.87.2
    34.50.360.831.5100.340.921.05.50.380.903.2120.320.951.86.5
    38.40.350.842.090.330.931.35.20.370.903.3110.310.962.35.8
    下载: 导出CSV
  • [1] TERZAGHI K. Theoretical soil mechanics[M]. Hoboken: John Wiley & Sons, Inc. , 1943.
    [2] COSTA Y D, ZORNBERG J G, BUENO B S, et al. Failure mechanisms in sand over a deep active trapdoor[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1741-1753. doi: 10.1061/(ASCE)GT.1943-5606.0000134
    [3] IGLESIA G R, EINSTEIN H H, WHITMAN R V. Investigation of soil arching with centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013005.1-04013005.13.
    [4] RUI R, VAN TOL A F, XIA Y Y, et al. Investigation of soil-arching development in dense sand by 2D model tests[J]. Geotechnical Testing Journal, 2016, 39(3): 20150130.1-20150130.16.
    [5] ESKIŞAR T, OTANI J, HIRONAKA J. Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT[J]. Geotextiles and Geomembranes, 2012, 32: 44-54. doi: 10.1016/j.geotexmem.2011.12.002
    [6] HONG W P, LEE J H, LEE K W. Load transfer by soil arching in pile-supported embankments[J]. Soils and Foundations, 2007, 47(5): 833-843. doi: 10.3208/sandf.47.833
    [7] AHMADI A, SEYEDI HOSSEININIA E. An experimental investigation on stable arch formation in cohesionless granular materials using developed trapdoor test[J]. Powder Technology, 2018, 330: 137-146. doi: 10.1016/j.powtec.2018.02.011
    [8] LAI H J, ZHENG J J, ZHANG R J, et al. Classification and characteristics of soil arching structures in pile-supported embankments[J]. Computers and Geotechnics, 2018, 98: 153-171. doi: 10.1016/j.compgeo.2018.02.007
    [9] SANTICHAIANAINT K. Centrifuge modeling and analysis of active trapdoor in sand[D]. Boulder: University of Colorado at Boulder.
    [10] GUO P J, ZHOU S H. Arch in granular materials as a free surface problem[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(9): 1048-1065. doi: 10.1002/nag.1137
    [11] CHEVALIER B, COMBE G, VILLARD P. Experimental and discrete element modeling studies of the trapdoor problem: influence of the macro-mechanical frictional parameters[J]. Acta Geotechnica, 2012, 7(1): 15-39. doi: 10.1007/s11440-011-0152-5
    [12] DEWOOLKAR M M, SANTICHAIANANT K, KO H Y. Centrifuge modeling of granular soil response over active circular trapdoors[J]. Soils and Foundations, 2007, 47(5): 931-945. doi: 10.3208/sandf.47.931
    [13] HAN J, WANG F, AL-NADDAF M, et al. Progressive development of two-dimensional soil arching with displacement[J]. International Journal of Geomechanics, 2017, 17(12): 04017112.1-04017112.12.
    [14] IGLESIA G R, EINSTEIN H H, WHITMAN R V. Validation of centrifuge model scaling for soil systems via trapdoor tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 1075-1089. doi: 10.1061/(ASCE)GT.1943-5606.0000517
    [15] KEAWSAWASVONG S, UKRITCHON B. Undrained stability of an active planar trapdoor in non-homogeneous clays with a linear increase of strength with depth[J]. Computers and Geotechnics, 2017, 81: 284-293. doi: 10.1016/j.compgeo.2016.08.027
    [16] PARDO G S, SÁEZ E. Experimental and numerical study of arching soil effect in coarse sand[J]. Computers and Geotechnics, 2014, 57: 75-84. doi: 10.1016/j.compgeo.2014.01.005
    [17] HAN G X, GONG Q M, ZHOU S H. Soil arching in a piled embankment under dynamic load[J]. International Journal of Geomechanics, 2015, 15(6): 4014094.1-4014094.11.
    [18] SADREKARIMI J, ABBASNEJAD A. Arching effect in fine sand due to base yielding[J]. Canadian Geotechnical Journal, 2010, 47(3): 366-374. doi: 10.1139/T09-107
    [19] KHOSRAVI M H, PIPATPONGSA T, TAKEMURA J. Theoretical analysis of earth pressure against rigid retaining walls under translation mode[J]. Soils and Foundations, 2016, 56(4): 664-675. doi: 10.1016/j.sandf.2016.07.007
    [20] YAO Q Y, DI H G, JI C, et al. Ground collapse caused by shield tunneling in sandy cobble stratum and its control measures[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5599-5614. doi: 10.1007/s10064-020-01878-9
    [21] 陈强,董桂城,王超,等. 基于透明土技术的桩后土拱效应特征分析[J]. 西南交通大学学报,2020,55(3): 509-522.

    CHEN Qiang, DONG Guicheng, WANG Chao, et al. Characteristics analysis of soil arching effect behind pile based on transparent soil technology[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 509-522.
    [22] 周思危. 砂土平面土拱形状及沉降特性研究[D]. 长沙: 中南大学, 2019.
    [23] TAYLOR Z J, GURKA R, KOPP G A, et al. Long-duration time-resolved PIV to study unsteady aerodynamics[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(12): 3262-3269. doi: 10.1109/TIM.2010.2047149
    [24] HADAD T, GURKA R. Effects of particle size, concentration and surface coating on turbulent flow properties obtained using PIV/PTV[J]. Experimental Thermal and Fluid Science, 2013, 45: 203-212. doi: 10.1016/j.expthermflusci.2012.11.006
    [25] 郑云,刘志祥,余志祥,等. 基于PIV试验的积雪平屋面风场特性研究[J]. 西南交通大学学报,2023,58(2): 430-437,461.

    ZHENG Yun, LIU Zhixiang, YU Zhixiang, et al. Wind field characteristics of snow-covered low-rise building roof based on PIV experiments[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 430-437,461.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  115
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 修回日期:  2021-12-14
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2021-12-17

目录

    /

    返回文章
    返回