• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高速列车转向架区域气动噪声源的特征识别

王毅刚 朱朗贤 王玉鹏 张昊 焦燕

王毅刚, 朱朗贤, 王玉鹏, 张昊, 焦燕. 高速列车转向架区域气动噪声源的特征识别[J]. 西南交通大学学报, 2023, 58(2): 261-271, 286. doi: 10.3969/j.issn.0258-2724.20210636
引用本文: 王毅刚, 朱朗贤, 王玉鹏, 张昊, 焦燕. 高速列车转向架区域气动噪声源的特征识别[J]. 西南交通大学学报, 2023, 58(2): 261-271, 286. doi: 10.3969/j.issn.0258-2724.20210636
WANG Yigang, ZHU Langxian, WANG Yupeng, ZHANG Hao, JIAO Yan. Characteristic Identification of Aerodynamic Noise Sources in High-Speed Train Bogie Area[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 261-271, 286. doi: 10.3969/j.issn.0258-2724.20210636
Citation: WANG Yigang, ZHU Langxian, WANG Yupeng, ZHANG Hao, JIAO Yan. Characteristic Identification of Aerodynamic Noise Sources in High-Speed Train Bogie Area[J]. Journal of Southwest Jiaotong University, 2023, 58(2): 261-271, 286. doi: 10.3969/j.issn.0258-2724.20210636

高速列车转向架区域气动噪声源的特征识别

doi: 10.3969/j.issn.0258-2724.20210636
基金项目: 高速铁路基础研究联合基金(U1834201)
详细信息
    作者简介:

    王毅刚(1964—),男,教授,研究方向为气动噪声、噪声与振动控制,E-mail:yigang.wang@sawtc.com

  • 中图分类号: U270.16

Characteristic Identification of Aerodynamic Noise Sources in High-Speed Train Bogie Area

  • 摘要:

    为了创建高速列车气动噪声源识别方法,以气动声学基本波动方程为基础,将高速列车气动声源等效为无数微球形声源组成,利用声辐射和流场物理量之间的关系,并结合高速列车气动数值仿真技术,建立了高速列车偶极子声源和四极子声源的识别方法,从全新的角度对某高速列车头车气动噪声源进行识别;基于涡声方程声源项特征,进一步揭示了偶极子声源和流场流动的关系. 研究结果明确了高速列车主要偶极子和四极子声源的强弱和分布特征,表明了气流的直接撞击和分离现象是产生声源的主要原因,头车及转向架区域气动噪声源以偶极子声源为主;偶极子声源强度较大位置出现在边沿较为尖锐的地方,在绝大多数情况下流体经过时涡量急剧增加,成为其形成强声源的主要原因.

     

  • 图 1  偶极子声源脉动和声辐射示意

    Figure 1.  Schematic diagram of dipole sound source pulsation and sound radiation

    图 2  由一对力点源构成的四极子声源

    Figure 2.  Quadrupole sound source composed of pair of force point sources

    图 3  风洞试验段高速列车模型安装及测点

    Figure 3.  Installation of high-speed train model and measuring points in wind tunnel test section

    图 4  流场外传声器测点分布(单位: m)

    Figure 4.  Distribution of measuring points of microphones outside the flow field (unit: m)

    图 5  风洞实验和仿真计算的声压级对比

    Figure 5.  Comparison of sound pressure level between wind tunnel experiment and simulation

    图 6  近头车表面的偶极子声源分布

    Figure 6.  Dipole sound source distribution near the surface of the head coach

    图 7  头车上的不同截面位置

    Figure 7.  Different cross-section positions on the head coach

    图 8  四极子声源的分布

    Figure 8.  Distribution of the quadrupole sound source

    图 9  前车轮声源区域及部分流线

    Figure 9.  Sound source area of front wheel and part of the streamline

    图 10  前车轮声源区域物理量沿流线变化的对比

    Figure 10.  Comparison of physical quantities’ changes along a streamline around the front wheel

    图 12  排障器声源区域物理量沿流线变化的对比

    Figure 12.  Comparison of physical quantities’ changes along a streamline around the cowcatcher

    图 14  转向架突出杆件声源区域物理量沿流线变化的对比

    Figure 14.  Comparison of physical quantities’ changes along a streamline around the bogie protruding rod

    图 16  裙板声源区域物理量沿流线变化的对比

    Figure 16.  Comparison of physical quantities’ changes along a streamline around the apron

    图 18  后车轮声源区域物理量沿流线变化的对比

    Figure 18.  Comparison of physical quantities’ changes along a streamline around the rear wheel

    图 20  转向架舱后沿声源区域物理量沿流线变化的对比

    Figure 20.  Comparison of physical quantities’ changes along a streamline around the rear edge of bogie cavity

    图 11  排障器声源区域及部分流线

    Figure 11.  Sound source area of cowcatcher and part of the streamline

    图 13  转向架突出杆件声源区域及部分流线

    Figure 13.  Sound source area of bogie protruding rod and part of the streamline

    图 15  裙板声源区域及部分流线

    Figure 15.  Sound source area of apron and part of the streamline

    图 17  后车轮声源区域及部分流线

    Figure 17.  Sound source area of rear wheel and part of the streamline

    图 19  转向架舱后沿声源区域及部分流线

    Figure 19.  Sound source area of the rear edge of bogie cavity and part of the streamline

    表  1  网格独立性测试结果

    Table  1.   Grid independence test results

    网格量/万图 4 中测点 3/
    总声压级
    与风洞实验
    总声压级差值
    380079.82.3
    400080.22.7
    450078.61.1
    700078.40.9
    下载: 导出CSV
  • [1] LIGHTHILL M J. On sound generated aerodynamically Ⅰ: general theory[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1952, 211(1107): 564-587.
    [2] LIGHTHILL M J. On sound generated aerodynamically Ⅱ: turbulence as a source of sound[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1954, 222(1148): 1-32.
    [3] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1955, 231(1187): 505-514.
    [4] FFOWCS W J E, HAWKINGS D L. Boundary-layer pressure and the corcos model: a development to incorporate low-wavenumber constraints[J]. Journal of Fluid Mechanics, 1965, 22: 505-519.
    [5] FFOWCS W J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A (1934-1990), 1969, 264(1151): 321-342.
    [6] POWELL A. Theory of vortex sound[J]. The Journal of the Acoustical Society of America, 1964, 36(1): 177-195. doi: 10.1121/1.1918931
    [7] BOGEY C, BAILLY C, JUVÉ D. Computation of flow noise using source terms in linearized Euler’s equations[J]. AIAA Journal, 2002, 40(2): 235-243. doi: 10.2514/2.1665
    [8] EWERT R, SCHRÖDER W. Acoustic perturbation equations based on flow decomposition via source filtering[J]. Journal of Computational Physics, 2003, 188(2): 365-398. doi: 10.1016/S0021-9991(03)00168-2
    [9] 王毅刚,黄晓胜,危巍,等. 涡声理论在汽车A柱气动噪声优化中的应用[J]. 噪声与振动控制,2017,37(2): 107-112. doi: 10.3969/j.issn.1006-1355.2017.02.022

    WANG Yigang, HUANG Xiaosheng, WEI Wei, et al. Aerodynamic noise optimization of vehicle’s A-pillar based on vortex sound theory[J]. Noise and Vibration Control, 2017, 37(2): 107-112. doi: 10.3969/j.issn.1006-1355.2017.02.022
    [10] 杨志刚,刘洋,王毅刚. 有限长圆柱绕流气动噪声源特性分析[J]. 声学技术,2019,38(1): 5-14.

    YANG Zhigang, LIU Yang, WANG Yigang. Study of aeroacoustic noise source induced by a cylindrical flow of finite length[J]. Technical Acoustics, 2019, 38(1): 5-14.
    [11] MELLET C, LÉTOURNEAUX F, POISSON F, et al. High speed train noise emission: latest investigation of the aerodynamic/rolling noise contribution[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 535-546.
    [12] 张卫华. 高速列车顶层设计指标研究[J]. 铁道学报,2012,34(9): 15-19. doi: 10.3969/j.issn.1001-8360.2012.09.003

    ZHANG Weihua. Study on top-level design specifications of high-speed trains[J]. Journal of the China Railway Society, 2012, 34(9): 15-19. doi: 10.3969/j.issn.1001-8360.2012.09.003
    [13] 张曙光. 350 km·h−1高速列车噪声机理、声源识别及控制[J]. 中国铁道科学,2009,30(1): 86-90.

    ZHANG Shuguang. Noise mechanism, sound source localization and noise control of 350 km·h−1 high-speed train[J]. China Railway Science, 2009, 30(1): 86-90.
    [14] 高阳,王毅刚,王金田,等. 声学风洞中的高速列车模型气动噪声试验研究[J]. 声学技术,2013,32(6): 506-510.

    GAO Yang, WANG Yigang, WANG Jintian, et al. Testing study of aerodynamic noise for high speed train model in aero-acoustic wind tunnel[J]. Technical Acoustics, 2013, 32(6): 506-510.
    [15] NAGAKURA K. Localization of aerodynamic noise sources of Shinkansen trains[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 547-556.
    [16] HE B, JIN X S. Investigation into external noise of a high-speed train at different speeds[J]. Journal of Zhejiang University Science A, 2014, 15: 1019-1033. doi: 10.1631/jzus.A1400307
    [17] LAUTERBACH A, EHRENFRIED K, LOOSE S, et al. Microphone array wind tunnel measurements of Reynolds number effects in high-speed train aeroacoustics[J]. International Journal of Aeroacoustics, 2012, 11(3/4): 411-446.
    [18] ATSUSHI Y N I. Evaluation methods for aerodynamic noise from a high-speed train bogie in a wind tunnel test[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2011(6): 1543-1553.
    [19] 张亚东,张继业,张亮,等. 高速列车动车转向架气动噪声数值分析[J]. 西南交通大学学报,2016,51(5): 870-877. doi: 10.3969/j.issn.0258-2724.2016.05.008

    ZHANG Yadong, ZHANG Jiye, ZHANG Liang, et al. Numerical analysis of aerodynamic noise of motor car bogie for high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 870-877. doi: 10.3969/j.issn.0258-2724.2016.05.008
    [20] 黄莎,杨明智,李志伟,等. 高速列车转向架部位气动噪声数值模拟及降噪研究[J]. 中南大学学报(自然科学版),2011,42(12): 3899-3904.

    HUANG Sha, YANG Mingzhi, LI Zhiwei, et al. Aerodynamic noise numerical simulation and noise reduction of high-speed train bogie section[J]. Journal of Central South University (Science and Technology), 2011, 42(12): 3899-3904.
    [21] 朱剑月,王毅刚,杨志刚,等. 高速列车转向架区域裙板对流场与气动噪声的影响[J]. 同济大学学报(自然科学版),2017,45(10): 1512-1521. doi: 10.11908/j.issn.0253-374x.2017.10.014

    ZHU Jianyue, WANG Yigang, YANG Zhigang, et al. Effect of bogie fairing on flow and aerodynamic noise behaviour around bogie of high-speed train[J]. Journal of Tongji University (Natural Science), 2017, 45(10): 1512-1521. doi: 10.11908/j.issn.0253-374x.2017.10.014
    [22] HAN J, LAN J. Research on the radiation characteristics of aerodynamic noises of a simplified bogie of the high-speed train[J]. Journal of Vibroengineering, 2017, 19(3): 2280-2293. doi: 10.21595/jve.2017.18229
    [23] 高阳,李启良,陈羽,等. 高速列车头型近场与远场噪声预测[J]. 同济大学学报(自然科学版),2019,47(1): 124-129. doi: 10.11908/j.issn.0253-374x.2019.01.018

    GAO Yang, LI Qiliang, CHEN Yu, et al. Prediction of near field and far field noise for high-speed train head shape[J]. Journal of Tongji University (Natural Science), 2019, 47(1): 124-129. doi: 10.11908/j.issn.0253-374x.2019.01.018
    [24] 张强. 气动声学基础[M]. 北京: 国防工业出版社, 2012.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  205
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-18
  • 修回日期:  2022-02-17
  • 网络出版日期:  2022-11-19
  • 刊出日期:  2022-03-17

目录

    /

    返回文章
    返回