• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

考虑两阶段电转气的区域综合能源系统优化调度

陈维荣 冉韵早 韩莹 李奇

陈维荣, 冉韵早, 韩莹, 李奇. 考虑两阶段电转气的区域综合能源系统优化调度[J]. 西南交通大学学报, 2023, 58(6): 1221-1230. doi: 10.3969/j.issn.0258-2724.20210605
引用本文: 陈维荣, 冉韵早, 韩莹, 李奇. 考虑两阶段电转气的区域综合能源系统优化调度[J]. 西南交通大学学报, 2023, 58(6): 1221-1230. doi: 10.3969/j.issn.0258-2724.20210605
CHEN Weirong, RAN Yunzao, HAN Ying, LI Qi. Optimal Scheduling of Regional Integrated Energy Systems Under Two-Stage Power to Gas[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1221-1230. doi: 10.3969/j.issn.0258-2724.20210605
Citation: CHEN Weirong, RAN Yunzao, HAN Ying, LI Qi. Optimal Scheduling of Regional Integrated Energy Systems Under Two-Stage Power to Gas[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1221-1230. doi: 10.3969/j.issn.0258-2724.20210605

考虑两阶段电转气的区域综合能源系统优化调度

doi: 10.3969/j.issn.0258-2724.20210605
基金项目: 国家自然科学基金(52007157, 51977181, 52077180);中国博士后科学基金(2021M692684);四川省科技计划(19YYJC0698);霍英东教育基金会高等院校青年教师基金(171104);中央高校基本科研业务费专项资金(2682020CX19)
详细信息
    作者简介:

    陈维荣(1965—),男,教授,博士,研究方向为电力系统及其自动化、新能源并网发电技术、燃料电池技术与应用等,E-mail:wrchen@swjtu.edu.cn

  • 中图分类号: U473.4

Optimal Scheduling of Regional Integrated Energy Systems Under Two-Stage Power to Gas

  • 摘要:

    针对区域综合能源系统的弃风弃光问题和经济成本最优问题,提出一种考虑电转气(P2G)两阶段模型的区域综合能源系统优化调度方法. 首先,以电-气-热-储-氢耦合的区域综合能源系统作为研究对象,建立系统各设备模型及P2G两环节模型;接着,在相关功率约束条件下建立系统优化调度模型;在此基础上,引入激励型电力需求侧响应,采用混合整数规划YALMIP函数对其优化,得到优化后负荷曲线,通过改变可转移负荷的用电时间以提升系统的经济性;再次,以日运行成本最小为优化目标,使用混合整数线性规划方法求解优化调度方案,并计算相应的成本;最后,结合某一地区的历史数据,利用本文所提出的优化调度方法求解电-气-热-储-氢耦合区域综合能源系统的优化调度结果,并开展不同季节、是否含P2G环节、是否考虑需求侧响应影响因素下的技术经济分析,验证了该方法的合理性和有效性. 研究结果表明:考虑两阶段P2G环节后,冬、夏季系统弃风弃光量均大幅减少,经济成本分别减少32.62%和61.64%;考虑需求侧响应后,冬季系统经济成本减少比例进一步提升至33.69%.

     

  • 图 1  “电-气-热-储-氢”区域综合能源系统结构

    Figure 1.  Integrated energy system structure of electricity-gas-heat-storage-hydrogen coupling area

    图 2  P2G 2阶段模型

    Figure 2.  Two-stage P2G model

    图 3  冬季典型日负荷预测数据

    Figure 3.  Predicted data of normal daily load in winter

    图 4  电价与天然气价

    Figure 4.  Electricity and gas prices

    图 5  冬季典型日风光出力预测数据

    Figure 5.  Predicted normal output data of wind turbine and photovoltaic system in winter

    图 6  风电出力及风机利用率

    Figure 6.  Optimal output of wind turbine and utilization

    图 7  光伏出力及光伏利用率

    Figure 7.  Optimal output of photovoltaic system and its utilization

    图 8  场景1的功率平衡图

    Figure 8.  Balance of power in scenario 1

    图 9  场景2的功率平衡图

    Figure 9.  Balance of power in scenario 2

    图 10  P2G环节出力

    Figure 10.  Optimal output of P2G

    图 11  冬季典型日电负荷需求响应前、后对比

    Figure 11.  Comparison of normal daily electric load demands in winter before and after introducing response

    表  1  算例场景设置

    Table  1.   Scenario settings

    场景季节含电/热储能含气储能含 P2G
    1 × ×
    2
    3 × ×
    4
    下载: 导出CSV

    表  2  不同场景下的系统运行成本

    Table  2.   Operating costs in different scenarios

    场景 购电成本 购气成本 购氢成本 弃风成本 弃光成本 总成本
    1 557.5 5863.6 1079.6 1099.4 56.6 8656.7
    2 401.0 5420.8 0 10.7 0 5832.5
    3 0 3025.6 1079.6 1426.6 207.7 5739.5
    4 0 2152.3 0 49.5 0 2201.8
    下载: 导出CSV

    表  3  冬季不同场景下的系统运行成本

    Table  3.   Operating costs in different scenarios in winter

    场景 购电成本 购气成本 购氢成本 弃风成本 弃光成本 补贴成本 总成本 节省成本/%
    1 557.5 5863.6 1079.6 1099.4 56.6 0 8656.7
    2 401.0 5420.8 0 10.7 0 0 5832.5 32.62
    5 22.6 5152.3 0 17.7 0 547.8 5740.4 33.69
    下载: 导出CSV
  • [1] 贾宏杰,王丹,徐宪东,等. 区域综合能源系统若干问题研究[J]. 电力系统自动化,2015,39(7): 198-207.

    JIA Hongjie, WANG Dan, XU Xiandong, et al. Research on some key problems related to integrated energy systems[J]. Automation of Electric Power Systems, 2015, 39(7): 198-207.
    [2] 邵成成,王锡凡,王秀丽,等. 多能源系统分析规划初探[J]. 中国电机工程学报,2016,36(14): 3817-3829.

    SHAO Chengcheng, WANG Xifan, WANG Xiuli, et al. Analysis and programming of multiple energy systems[J]. Proceedings of the Chinese Society for Electrical Engineering, 2016, 36(14): 3817-3829.
    [3] LIU J, LI J, YAO X. The economic effects of the development of the renewable energy industry in China[J]. Energies, 2019, 12(9): 1808.1-1808.18. doi: 10.3390/en12091808
    [4] 许东,谢梦华. 综合能源系统规划现状分析[J]. 低碳世界,2019,9(7): 87-89.
    [5] 黎静华,朱梦姝,陆悦江,等. 综合能源系统优化调度综述[J]. 电网技术,2021,45(6): 2256-2272. doi: 10.13335/j.1000-3673.pst.2021.0020

    LI Jinghua, ZHU Mengshu, LU Yuejiang, et al. A review of optimal scheduling for integrated energy systems[J]. Power System Technology, 2021, 45(6): 2256-2272. doi: 10.13335/j.1000-3673.pst.2021.0020
    [6] 施泉生,丁建勇,晏伟,等. 基于能量流含P2G电-热系统风电消纳优化运行[J]. 太阳能学报,2021,42(5): 394-400.

    SHI Quansheng, DING Jianyong, YAN Wei, et al. Optimized operation of wind power consumption based on energy flow with P2G electro-thermal system[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 394-400.
    [7] 张涛,郭玥彤,李逸鸿,等. 计及电气热综合需求响应的区域综合能源系统优化调度[J]. 电力系统保护与控制,2021,49(1): 52-61. doi: 10.19783/j.cnki.pspc.200167

    ZHANG Tao, GUO Yuetong, LI Yihong, et al. Optimization scheduling of regional Integrated energy System with integrated electric-thermal demand Response[J]. Protection and Control of Power Systems, 2021, 49(1): 52-61. doi: 10.19783/j.cnki.pspc.200167
    [8] 刘志坚,刘瑞光,梁宁,等. 含电转气的微型能源网日前经济优化调度策略[J]. 电工技术学报,2020,35(增2): 535-543.

    LIU Zhijian, LIU Ruiguang, LIANG Ning, et al. Day-ahead optimal economic dispatching strategy for micro energy-grid with P2G[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 535-543.
    [9] 邓逸天,王宇辉,黄景光,等. 考虑需求响应的含P2G电-气综合能源系统优化调度[J]. 智慧电力,2020,48(12): 8-13,32.

    DENG Yitian, WANG Yuhui, HUANG Jingguang, et al. Optimal dispatch of integrated electricity-gas system with power to gas considering demand response[J]. Smart Power, 2020, 48(12): 8-13,32.
    [10] GAHLEITNER STATIONARY G. Hydrogen from renewable electricity: an international review of power-to-gas pivot plants for stationary applications[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2039-2061. doi: 10.1016/j.ijhydene.2012.12.010
    [11] 降国俊,崔双喜,樊小朝,等. 考虑电转氢气过程及综合需求响应的电-氢-气综合能源系统协调优化运行[J]. 可再生能源,2021,39(1): 88-94.

    JIANG Guojun, CUI Shuangxi, FAN Xiaochao, et al. Coordinated and optimized operation of electric-hydrogen-gas integrated energy system considering the process of power to hydrogen and comprehensive demand response[J]. Renewable Energy, 2021, 39(1): 88-94.
    [12] 吴锋棒. 风光氢储综合能源系统优化配置[J]. 山东化工,2020,49(16): 135-136, 138.

    WU Fengbang. Optimal configuration of wind-solar hydrogen storage integrated energy system[J]. Shandong Chemical Industry, 2020, 49(16): 135-136, 138.
    [13] 王成山,王丹,李立浧,等. 需求侧智慧能源系统关键技术分析[J]. 中国工程科学,2018,20(3): 132-140. doi: 10.15302/J-SSCAE-2018.03.019

    WANG Chengshan, WANG Dan, LI Liying, et al. Analysis of key technologies of demand-side smart energy systems[J]. Strategic Study of Chinese Academy of Engineering, 2018, 20(3): 132-140. doi: 10.15302/J-SSCAE-2018.03.019
    [14] WANG B, WANG Q, WEI Y, et al. Role of renewable energy in China’s energy security and climate change mitigation: an index decomposition analysis[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 187-194. doi: 10.1016/j.rser.2018.03.012
    [15] 王磊,姜涛,宋丹,等. 基于灵活热电比的区域综合能源系统多目标优化调度[J]. 电力系统保护与控制,2021,49(8): 151-159.

    WANG Lei, JIANG Tao, SONG Dan, et al. Multi-objective optimization scheduling of regional integrated energy system based on flexible thermoelectric ratio[J]. Power System Protection and Control, 2021, 49(8): 151-159.
    [16] 王海云,杨宇,于希娟,等. 基于需求侧响应的电热综合能源系统风电消纳低碳经济调度[J]. 燕山大学学报,2021,45(2): 142-152.

    WANG Haiyun, YANG Yu, YU Xijuan, et al. Low carbon economic dispatching of wind power consumption in electric and thermal integrated energy system based on demand side response[J]. Journal of Yanshan University, 2021, 45(2): 142-152.
    [17] 陈琦,李红伟,周海林. 考虑风电消纳的电-热综合能源系统经济运行研究[J]. 中国测试,2022,48(1): 116-121.

    CHEN Qi, LI Hongwei, ZHOU Hailin . Considering wind power given electrical and thermal energy system economic operation research[J]. China Test, 2022, 48(1): 116-121.
    [18] 王珂,姚建国,姚良忠,等. 电力柔性负荷调度研究综述[J]. 电力系统自动化,2014,38(20): 127-135.

    WANG Ke, YAO Jianguo, YAO Liangzhong, et al. Review of flexible power load scheduling[J]. Automation of Electric Power Systems, 2014, 38(20): 127-135.
    [19] 符杨,蒋一鎏,李振坤,等. 计及可平移负荷的微网经济优化调度[J]. 中国电机工程学报,2014,34(16): 2612-2620.

    FU Yang, JIANG Yiliu, LI Zhenkun, et al. Economic optimal scheduling of micro-grid considering translatable loading[J]. Proceedings of the Chinese Society for Electrical Engineering, 2014, 34(16): 2612-2620.
    [20] 何舜,郑毅,蔡旭,等. 微网能源系统的滚动优化管理[J]. 电网技术,2014,38(9): 2349-2355.

    HE Shun, ZHENG Yi, CAI Xu, et al. Rolling optimization management of micro grid energy system[J]. Power Grid Technology, 2014, 38(9): 2349-2355.
    [21] 何舜,郑毅,蔡旭,等. 基于荷-储型微网的需求侧管理系统运行优化[J]. 电力系统自动化,2015,39(19): 15-20.

    HE Shun, ZHENG Yi, CAI Xu, et al. Operation optimization of demand-side management system based on load-storage microgrid[J]. Automation of Electric Power Systems, 2015, 39(19): 15-20.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  123
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-11-11
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回