• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

GPS非差精密解算软件PLAOD及其性能分析

徐韶光 熊永良 张文皓 王德军

徐韶光, 熊永良, 张文皓, 王德军. GPS非差精密解算软件PLAOD及其性能分析[J]. 西南交通大学学报, 2023, 58(1): 159-166. doi: 10.3969/j.issn.0258-2724.20210596
引用本文: 徐韶光, 熊永良, 张文皓, 王德军. GPS非差精密解算软件PLAOD及其性能分析[J]. 西南交通大学学报, 2023, 58(1): 159-166. doi: 10.3969/j.issn.0258-2724.20210596
XU Shaoguang, XIONG Yongliang, ZHANG Wenhao, WANG Dejun. Undifferenced Precise GPS Processing Software PLAOD and Its Performance Analysis[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 159-166. doi: 10.3969/j.issn.0258-2724.20210596
Citation: XU Shaoguang, XIONG Yongliang, ZHANG Wenhao, WANG Dejun. Undifferenced Precise GPS Processing Software PLAOD and Its Performance Analysis[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 159-166. doi: 10.3969/j.issn.0258-2724.20210596

GPS非差精密解算软件PLAOD及其性能分析

doi: 10.3969/j.issn.0258-2724.20210596
基金项目: 国家自然科学基金(41274044);四川省科技计划(2021YFG0339)
详细信息
    作者简介:

    徐韶光(1983—),男,讲师,研究方向为GNSS数据处理,E-mail:shaoguangxu@swjtu.edu.cn

    通讯作者:

    熊永良(1964—),男,教授,研究方向为GNSS理论与应用,E-mail:ylxiong@sina.com

  • 中图分类号: P228

Undifferenced Precise GPS Processing Software PLAOD and Its Performance Analysis

  • 摘要:

    PLAOD (precise location and orbit determination)是西南交通大学自主研发的GPS非差精密定位定轨软件. 该软件目前能够处理GPS观测数据,具有高精度定位、大气反演和低轨卫星轨道确定功能. 本文在介绍PLAOD相关理论的基础之上对其性能进行了分析. 利用多组GPS观测数据进行测试,通过与IGS (international GNSS service)等相关机构精密产品对比,PLAOD具备如下性能:静态定位精度可达毫米级;动态定位精度可达厘米级;静态对流层天顶延迟的估计精度通常优于1 cm,动态对流层天顶延迟的估计精度在2 cm以内;电离层天顶延迟估计结果与IGS的IONEX (ionosphere exchange)产品具有较高的吻合度;与JPL (jet propulsion laboratory)提供的简化动力学低轨卫星轨道相比,几何法确定轨道的准确度可达厘米级.

     

  • 图 1  PLAOD数据处理流程

    Figure 1.  Data processing flowchart of PLAOD

    图 2  CHAN站2020年1月1日静态坐标偏差序列

    Figure 2.  Coordinate bias series of CHAN station on 1st Jan, 2020 in static mode

    图 3  HKWS站2020年1月3日静态坐标偏差序列

    Figure 3.  Coordinate bias series of HKWS station on 3rd Jan, 2020 in static mode

    图 4  CHAN站2020年1月1日动态坐标偏差序列

    Figure 4.  Coordinate bias series of CHAN station on 1st Jan, 2020 in kinematic mode

    图 5  2011年3月11日MIZU站动态坐标偏差序列

    Figure 5.  Coordinate bias series of MIZU station in kinematic mode on 11th Mar, 2011

    图 6  2020年8月12日BJFS 站ZTD序列

    Figure 6.  ZTD series of BJFS station on 12th Aug, 2020

    图 7  2020年1月1日TWTF站ZTD序列

    Figure 7.  ZTD series of TWTF station on 1st Jan, 2020

    图 8  2008年8月1日机载GPS ZTD序列

    Figure 8.  ZTD series of airborne GPS on 1st Aug, 2008

    图 9  TWTF站2020年1月1日电离层天顶延迟序列

    Figure 9.  Ionospheric zenith delay series of TWTF station on 1st Jan, 2020

    图 10  2016年1月3日GRACE (A)卫星轨道偏差序列

    Figure 10.  Orbit bias series of satellite GRACE (A) on 3rd Jan, 2016

    图 11  2016年1月3日GRACE (B)卫星轨道偏差序列

    Figure 11.  Orbit bias series of satellite GRACE (B) on 3rd Jan, 2016

    表  1  误差改正

    Table  1.   Error correction

    误差来源改正参考误差来源改正参考
    相对论效应Neil Ashby [11]DCB
    (需要时)
    CODE
    卫星天线相位中心igs_yy.atx重力延迟Neil Ashby [11]
    接收机天线相位中心igs_yy.atx海潮IERS2010[12]
    固体潮汐IERS2010[12]极潮IERS2010[12]
    天线相位转绕Wu 等, 1993[13]
    下载: 导出CSV

    表  2  PLAOD参数处理方案

    Table  2.   Parameter processing strategy of PLAOD

    参数处理方案
    测站坐标  静态时过程噪声为 0,动态时先验值源自伪距单点定位
    模糊度 过程噪声为 0
    对流层  随机游走,过程噪声默认为 4 cm2/h,动态时顾及历元间高差引起的影响
    对流层梯度 随机游走
    电离层 随机游走
    电离层梯度 随机游走
    接收机钟差 先验值源自伪距单点定位
    卫星钟差 20 min弧段二阶多项式拟合
    卫星坐标 10 阶滑动拉格朗日插值
    下载: 导出CSV

    表  3  测试站地理点位置

    Table  3.   Geographic location of testing stations

    站点 经度/(°) 纬度/(°)
    CHAN(长春) 125.443 43.790
    BJFS(北京房山) 115.892 39.609
    BJNM(北京) 116.224 40.245
    HKSL(香港小冷水) 113.928 22.372
    HKWS(香港黄石) 114.335 22.434
    JFNG(九峰) 114.491 30.516
    LHAZ(拉萨) 91.104 29.657
    TWTF(桃园) 121.164 24.954
    下载: 导出CSV

    表  4  站点解算坐标偏差

    Table  4.   Coordinate bias of solved stations

    站点年积日dN
    /mm
    dE
    /mm
    dU
    /mm
    收敛时间
    /min
    CHAN0011.9−9.2−11.332.0
    0022.4−5.7−7.519.0
    0032.0−7.1−9.243.0
    BJFS0012.01.2−1.830.0
    0022.50.7−0.521.0
    0032.5−0.22.823.0
    BJNM0012.6−3.6−0.829.0
    0024.50.41.450.0
    0034.0−4.54.346.5
    HKSL0012.00.5−3.930.5
    0023.80.11.725.0
    0034.4−2.52.020.5
    HKWS0011.01.52.230.0
    0023.31.9−0.152.5
    0033.5−0.31.9104.5
    JFNG0012.03.20.620.0
    0022.84.49.013.0
    0033.13.48.119.0
    LHAZ0013.6−1.5−3.842.0
    0024.11.5−0.357.0
    0033.5−1.5−4.444.0
    TWTF0010.83.9−9.326.5
    0024.41.0−5.421.5
    0034.00.1−6.319.0
    下载: 导出CSV
  • [1] ZUMBERGE J F, HEFLIN M B, JEFFERSON D C, et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research, 1997, 102(B3): 5005-5017. doi: 10.1029/96JB03860
    [2] KOUBA J, HÉROUX P. Precise point positioning using IGS orbit and clock products[J]. GPS Solutions, 2001, 5(2): 12-28. doi: 10.1007/PL00012883
    [3] GAO, Y, SHEN, X. A new method for carrier phase based precise point positioning[J]. Navigation, 2002, 49(2): 109-116. doi: 10.1002/j.2161-4296.2002.tb00260.x
    [4] 张小红,李星星,李盼. GNSS精密单点定位技术及应用进展[J]. 测绘学报,2017,46(10): 1399-1407. doi: 10.11947/j.AGCS.2017.20170327

    ZHANG Xiaohong, LI Xingxing, LI Pan. Review of GNSS PPP and its application[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1399-1407. doi: 10.11947/j.AGCS.2017.20170327
    [5] GENG Jianghui. Rapid integer ambiguity resolution in GPS precise point positioning[D]. Nottingham: University of Nottingham, 2010.
    [6] SIMON B, RICHARD B. L, MARCELO C. S. The precise point positioning software centre: an insight into online PPP services[R]. Buenos Aires: IAG, 2009.
    [7] IBANEZ D, ROVIRA G A, SANZ J, et al. The GNSS laboratory tool suite (gLAB) updates: SBAS, DGNSS and global monitoring system[C]//9th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing. Noordwijk: IEEE, 2018: 1-11.
    [8] TAKASU T. RTKLIB: open source program Package for RTK-GPS[R]. Tokyo: Tokyo University of Marine Science and Technology, 2009.
    [9] GENG J H, CHEN X Y, PAN Y X, et al. PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution[J]. GPS Solutions, 2019, 23(4): 1-10.
    [10] BANVILLE S, GENG J H, LOYER S, et al. On the interoperability of IGS products for precise point positioning with ambiguity resolution[J]. Journal of Geodesy, 2020, 94(1): 1-15. doi: 10.1007/s00190-019-01332-z
    [11] ASHBY N. Relativity in the global positioning system[J]. Living Reviews in Relativity, 2003, 6(1): 1-42. doi: 10.12942/lrr-2003-1
    [12] PETIT G, LUZUM B. IERS Conventions (2010) [EB/OL]. [2021-7-26]. https://www.iers.org/IERS/EN/Publications/TechnicalNotes/tn36.html.
    [13] WU J T, WU S C, HAJJ G A, et al. Effects of antenna orientation on GPS carrier phase[J]. Manuscripta Geodaetica, 1993, 18(2): 91-98.
    [14] WELCH G, BISHOP G. An introduction to the Kalman filter[EB/OL]. [2021-07-26]. https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
    [15] GUO J Y, YUAN Y D, KONG Q L, et al. Deformation caused by the 2011 eastern Japan great earthquake monitored using the GPS single-epoch precise point positioning technique[J]. Applied Geophysics, 2012, 9(4): 483-493. doi: 10.1007/s11770-012-0360-2
    [16] KOUBA J. Implementation and testing of the gridded Vienna mapping function 1 (VMF1)[J]. Journal of Geodesy, 2008, 82(4/5): 193-205.
    [17] BOEHM J, NIELL A, TREGONING P, et al. Global mapping function: a new empirical mapping function based on numerical weather model data[J]. Geophysical Research Letters, 2006, 33(7): 304-317.
    [18] BOEHM J, HEINKELMANN R, SCHUH H. Short note: a global model of pressure and temperature for geodetic applications[J]. Journal of Geodesy, 2007, 81(10): 679-683. doi: 10.1007/s00190-007-0135-3
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  329
  • HTML全文浏览量:  157
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-10-09
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2021-11-15

目录

    /

    返回文章
    返回