• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

钢管混凝土风电塔架球式节点的力学性能分析

闻洋 李兆建 于蛟

闻洋, 李兆建, 于蛟. 钢管混凝土风电塔架球式节点的力学性能分析[J]. 西南交通大学学报, 2023, 58(6): 1440-1448. doi: 10.3969/j.issn.0258-2724.20210583
引用本文: 闻洋, 李兆建, 于蛟. 钢管混凝土风电塔架球式节点的力学性能分析[J]. 西南交通大学学报, 2023, 58(6): 1440-1448. doi: 10.3969/j.issn.0258-2724.20210583
WEN Yang, LI Zhaojian, YU Jiao. Mechanical Property Analysis of Spherical Joints of Concrete-Filled Steel Tubular Wind Power Towers[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1440-1448. doi: 10.3969/j.issn.0258-2724.20210583
Citation: WEN Yang, LI Zhaojian, YU Jiao. Mechanical Property Analysis of Spherical Joints of Concrete-Filled Steel Tubular Wind Power Towers[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1440-1448. doi: 10.3969/j.issn.0258-2724.20210583

钢管混凝土风电塔架球式节点的力学性能分析

doi: 10.3969/j.issn.0258-2724.20210583
基金项目: 国家自然科学基金(51768056);内蒙古自治区自然科学基金(2019MS05038);内蒙古自治区高校青年科技英才项目(NJYT22068)
详细信息
    作者简介:

    闻洋(1976—),男,教授,博士,研究方向为钢与混凝土组合结构,E-mail:wenyangalbert@163.com

  • 中图分类号: TU398.9

Mechanical Property Analysis of Spherical Joints of Concrete-Filled Steel Tubular Wind Power Towers

  • 摘要:

    为寻找更适合钢管混凝土格构式风电塔架的节点形式,开展了2个法兰盘球型分支节点和2个法兰盘螺栓球节点模型的静力试验,并对其进行有限元分析,以球台高度和厚度为变化参数,分别对比了2种节点的破坏模式、法兰盘等效应力分布、腹杆轴力-变形曲线等. 研究结果表明:法兰盘球型分支节点的破坏模式为高强螺栓剪切破坏,法兰盘螺栓球节点的破坏模式为球台焊缝撕裂破坏和屈曲-撕裂破坏;与法兰盘球型分支节点相比,法兰盘螺栓球节点的法兰盘和球台的等效应力分布均匀,材料利用率较高,其最大应力绝对值分别提高了19%、52%,承载能力较强;腹杆轴力-变形曲线的塑性阶段长,延性较好;对球台高度或厚度的变化反映在节点极限承载力上更敏感,有更高的极限承载力;法兰盘螺栓球节点有进一步推广应用的价值.

     

  • 图 1  节点示意

    Figure 1.  Schematic of joints

    图 2  试验加载装置

    Figure 2.  Test loading device

    图 3  试件破坏形态

    Figure 3.  Failure shape of specimens

    图 4  法兰盘应变花编号

    Figure 4.  Flange strain rosette number

    图 5  法兰盘等效应力分布

    Figure 5.  Equivalent stress distribution of flange

    图 6  球台区应变花编号

    Figure 6.  Number of strain rosettes in table area

    图 7  球台区等效应力分布

    Figure 7.  Equivalent stress distribution in table area

    图 8  腹杆轴力-变形曲线

    Figure 8.  Axial force-deformation curves of web rod

    图 9  有限元模拟与试验对比

    Figure 9.  Comparison of finite element simulation and experiment

    图 10  Nuf1hb曲面拟合投影

    Figure 10.  Nuf1, h, and b surface fitting projection diagram

    图 11  Nuf2hb曲面拟合投影

    Figure 11.  Nuf2, h, and b surface fitting projection diagram

    表  1  试件参数

    Table  1.   Specimen parameters

    类型试件
    编号
    包裹体尺寸/
    mm
    球台外径/
    mm
    b/mmh/mm腹杆尺寸/
    mm
    螺纹外径/
    mm
    法兰盘球形
    分支节点
    JD-1ϕ241 × 11ϕ1221150ϕ89 × 3.5 × 700M52
    JD-2ϕ241 × 11ϕ114760ϕ89 × 3.5 × 700M52
    法兰盘
    螺栓球节点
    JD-3ϕ241 × 11ϕ1221150ϕ89 × 3.5 × 700
    JD-4ϕ241 × 11ϕ114760ϕ89 × 3.5 × 700
    下载: 导出CSV

    表  2  钢材力学性能指标

    Table  2.   Mechanical property indexes of steels

    部件fy /MPafu /MPaE/GPa
    腹杆300479204
    塔柱324485202
    球台302464199
    法兰盘316479201
    下载: 导出CSV

    表  3  节点承载力

    Table  3.   Joint bearing capacity

    试件编号试验值/kN模拟值/kN误差/%
    JD-189.094.15.7
    JD-2112.0118.55.8
    JD-3289.0281.32.7
    JD-4369.0351.44.8
    下载: 导出CSV

    表  4  参数拓展结果

    Table  4.   Parameter expansion results

    节点编号h/mmb/mmNuf1/kNNuf2/kN
    A-150670.9213.1
    A-2778.1222.3
    A-3882.1231.1
    A-4988.2248.5
    A-51090.6264.6
    A-61194.1281.3
    A-71294.9287.9
    B-155685.1251.1
    B-2796.3261.1
    B-38100.3278.3
    B-49106.5292.8
    B-510108.8325.7
    B-611111.4341.7
    B-712112.1342.4
    C-1606105.1334.8
    C-27118.5351.4
    C-38120.6363.3
    C-49123.1373.2
    C-510125.9395.2
    C-611128.6413.4
    C-712129.7416.6
    D-1626112.6348.3
    D-27124.9363.3
    D-38128.9371.7
    D-49132.3382.3
    D-510134.5405.2
    D-611136.4423.4
    D-712136.7424.9
    下载: 导出CSV
  • [1] DUAN H B. Emissions and temperature benefits: the role of wind power in China[J]. Environmental Research, 2017, 152: 342-350. doi: 10.1016/j.envres.2016.07.016
    [2] 张兰娣,张龙君,马轶群,等. 风电高塔架的前景分析[J]. 河北建筑工程学院学报,2018,36(3): 97-99,104.

    ZHANG Landi, ZHANG Longjun, MA Yiqun, et al. An analysis of the prospect of high tower of wind turbine[J]. Journal of Hebei institute of Architecture and Civil Engineering, 2018, 36(3): 97-99,104.
    [3] ADAM Z, WOLNIEWICZ K. The impact of supporting tower on wind turbine noise emission[J]. Applied Acoustics, 2019, 155: 260-270.
    [4] HUANG X G, LI B K, ZHOU X H, et al. Geometric optimisation analysis of steel-concrete hybrid wind turbine towers[J]. Structures, 2022, 35: 1125-1137. doi: 10.1016/j.istruc.2021.08.036
    [5] 董崇海. 钢-混凝土组合结构风电塔架力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
    [6] 刘海锋,朱彬荣,张宏杰,等. 钢管格构式和圆筒式塔架对风力机尾流扰动特性对比研究[J]. 太阳能学报,2019,40(7): 2036-2044.

    LIU Haifeng, ZHU Binrong, ZHANG Hongjie, et al. Comparative study on disturbance properties of tubular latticed and pipe tower on wake of wind turbines[J]. Acta Energiae Solaris Sinica, 2019, 40(7): 2036-2044.
    [7] 陈娟,聂建国,周成野. 钢管混凝土T形相贯节点应力集中系数研究[J]. 建筑结构学报,2018,39(3): 149-157.

    CHEN Juan, NIE Jianguo, ZHOU Chengye. Study on stress concentration factor of concrete-filled steel tubular T-joints[J]. Journal of Building Structures, 2018, 39(3): 149-157.
    [8] 高春彦,史治宇,牛丽华,等. 圆钢管混凝土K型焊接管板节点试验研究和有限元分析[J]. 中南大学学报(自然科学版),2017,48(3): 769-778.

    GAO Chunyan, SHI Zhiyu, NIU Lihua. Experimental study and finite element analysis of concrete-filled circular steel tubular K-type welded tube-gusset joints[J]. Journal of Central South University, 2017, 48(3): 769-778.
    [9] 赵必大,刘成清,章圣冶,等. Y型圆钢管相贯节点轴向刚度计算模型[J]. 西南交通大学学报,2015,50(5): 872-878.

    ZHAO Bida, LIU Chengqing, ZHANG Shengye, et al. Calculation model for axial rigidity of CHS Y-type joints[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 872-878.
    [10] 宋谦益. 圆钢管混凝土-钢管K形节点的力学性能研究[D]. 北京: 清华大学, 2010.
    [11] 王鹏,王湛,潘建荣,等. 空间隔板焊接X形圆钢管相贯节点受力性能试验研究[J]. 建筑结构学报,2019,40(3): 221-229.

    WANG Peng, WANG Zhan, PAN Jianrong, et al. Investigation on mechanical behavior of X-shaped welded spatial partition plate tubular joints[J]. Journal of Building Structures, 2019, 40(3): 221-229.
    [12] 蔡健,王永琦,陈庆军,等. 一种新型单层网壳节点的力学性能研究[J]. 西南交通大学学报,2019,54(1): 145-153.

    CAI Jian, WANG Yongqi, CHEN Qingjun, et al. Research on mechanical behaviours of new joints of single-layer reticulated shells[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 145-153.
    [13] MUSA I A, MASHIRI F R. Stress concentration factor in concrete-filled steel tubular K-joints under balanced axial load[J]. Thin-Walled Structures, 2019, 139: 186-195. doi: 10.1016/j.tws.2019.03.003
    [14] LI F, DENG H Z, HU X Y. Resistance of gusset-tube DK-joints stiffened by 1/2 annular plates in transmission towers[J]. Journal of Constructional Steel Research, 2019, 159: 560-573. doi: 10.1016/j.jcsr.2019.05.013
    [15] 李斌,赵振中,程亚超. 钢管混凝土格构式风电塔架节点力学性能对比分析[J]. 重庆理工大学学报(自然科学),2020,34(7): 108-113,175.

    LI Bin, ZHAO Zhengzhong, CHENG Yachao. Comparative analysis of mechanical properties of concrete-filled steel tubular lattice wind turbine tower joints[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(7): 108-113,175.
    [16] 韩林海. 钢管混凝土结构: 理论与实践[M]. 3版. 北京: 科学出版社, 2016.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  83
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-18
  • 修回日期:  2022-03-15
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2022-04-21

目录

    /

    返回文章
    返回