• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

状态依赖型切换系统的数据驱动方法建模

王涛 谭吉 刘东 杨叶江

王涛, 谭吉, 刘东, 杨叶江. 状态依赖型切换系统的数据驱动方法建模[J]. 西南交通大学学报, 2024, 59(3): 493-500. doi: 10.3969/j.issn.0258-2724.20210579
引用本文: 王涛, 谭吉, 刘东, 杨叶江. 状态依赖型切换系统的数据驱动方法建模[J]. 西南交通大学学报, 2024, 59(3): 493-500. doi: 10.3969/j.issn.0258-2724.20210579
WANG Tao, TAN Ji, LIU Dong, YANG Yejiang. Modeling of State-Dependent Switching System Based on Data-Driven[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 493-500. doi: 10.3969/j.issn.0258-2724.20210579
Citation: WANG Tao, TAN Ji, LIU Dong, YANG Yejiang. Modeling of State-Dependent Switching System Based on Data-Driven[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 493-500. doi: 10.3969/j.issn.0258-2724.20210579

状态依赖型切换系统的数据驱动方法建模

doi: 10.3969/j.issn.0258-2724.20210579
基金项目: 国家自然科学基金(U21A20169);四川省自然科学基金面上项目(2022NSFSC045);西安市科技计划项目(23ZDCYYYCJ0007)
详细信息
    作者简介:

    王涛(1972—),男,教授,博士,博士生导师,研究方向为计算机控制技术,E-mail:wangtao618@126.com

  • 中图分类号: TP391

Modeling of State-Dependent Switching System Based on Data-Driven

  • 摘要:

    切换系统是由一系列连续或离散的子系统和切换机制组合而成的一类复杂系统,状态依赖型切换系统因其复杂性而尚未被深入研究. 因此,通过系统的输入输出轨迹来对状态依赖的切换系统进行数据驱动建模,利用数据挖掘技术寻找数据之间的有用信息,建立输入与输出之间更形象的表达形式;在此基础上提出一种结构框架,根据辨识轨迹的切换时刻将数据分段,借助神经网络建立子系统的模型以及切换规则,深度挖掘状态依赖切换系统的信息,得到切换系统中子系统及子系统间的信息. 实验结果表明:相比传统的机理建模,本文提出的数据驱动方法将建模的复杂度降低了17.3%.

     

  • 图 1  运行示例跟踪

    Figure 1.  Tracking of running example

    图 2  状态依赖切换过程

    Figure 2.  State-dependent switching process

    图 3  电压轨迹采样

    Figure 3.  Sampling of voltage trajectory

    图 4  流程框架

    Figure 4.  Flowchart framework

    图 5  电压小波变换结果

    Figure 5.  Results of voltage wavelet transformation

    图 6  电压分段编号

    Figure 6.  Numbers of voltage segment

    图 7  最小二乘拟合切换规则

    Figure 7.  Switching rule of least squares fitting

    图 8  神经网络拟合切换规则

    Figure 8.  Switching rule of neural network fitting

    图 9  状态空间输出与所提出框架建模的输出对比

    Figure 9.  Comparison of state space output and proposed framework modeling output

    图 10  替代电路输出电流预测和测试对比

    Figure 10.  Comparison of predicted and test output currents of alternative circuit

    图 11  替代电路输出电压预测和测试对比

    Figure 11.  Comparison of predicted and test output voltages of alternative circuit

  • [1] 郑刚,谭民,宋永华. 混杂系统的研究进展[J]. 控制与决策,2004,19(1): 7-11,16.

    ZHENG Gang, TAN Min, SONG Yonghua. Research on hybrid systems: a survey[J]. Control and Decision, 2004, 19(1): 7-11,16.
    [2] 程代展,郭宇骞. 切换系统进展[J]. 控制理论与应用,2005,22(6): 954-960.

    CHENG Daizhan, GUO Yuqian. Advances on switched systems[J]. Control Theory & Applications, 2005, 22(6): 954-960.
    [3] SHOHAM S, YAHAV E, FINK S, et al. Static specification mining using automata-based abstractions[J]. IEEE Transactions on Software Engineering, 2008, 34(5): 651-666. doi: 10.1109/TSE.2008.63
    [4] GUDIÑO-MENDOZA B, LÓPEZ-MELLADO E. A modeling methodology for designing agents networks using timed hybrid Petri nets[J]. Simulation, 2017, 93(4): 323-333. doi: 10.1177/0037549716687835
    [5] WANG R R, ZHOU J, JIANG H, et al. A general transfer learning-based Gaussian mixture model for clustering[J]. International Journal of Fuzzy Systems, 2021, 23(3): 776-793. doi: 10.1007/s40815-020-01016-3
    [6] LIN H, ANTSAKLIS P J. Stability and stabilizability of switched linear systems: a survey of recent results[J]. IEEE Transactions on Automatic Control, 2009, 54(2): 308-322. doi: 10.1109/TAC.2008.2012009
    [7] ZHANG Q, WANG Q J, LI G L. Switched system identification based on the constrained multi-objective optimization problem with application to the servo turntable[J]. International Journal of Control, Automation and Systems, 2016, 14(5): 1153-1159. doi: 10.1007/s12555-015-0057-4
    [8] GARULLI A, PAOLETTI S, VICINO A. A survey on switched and piecewise affine system identification[J]. IFAC Proceedings Volumes, 2012, 45(16): 344-355. doi: 10.3182/20120711-3-BE-2027.00332
    [9] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//IEEE International Joint Conference on Neural Networks. Budapest: IEEE, 2004: 985-990.
    [10] JI Y F, ZHANG S, YIN Y X, et al. Application of the improved the ELM algorithm for prediction of blast furnace gas utilization rate[J]. IFAC-PapersOnLine, 2018, 51(21): 59-64. doi: 10.1016/j.ifacol.2018.09.393
    [11] YIN Y H, LI H F. Multi-view CSPMPR-ELM feature learning and classifying for RGB-D object recognition[J]. Cluster Computing, 2019, 22(4): 8181-8191.
    [12] 张斌. 切换系统的切换律及其输入u(t)整体最佳的设计方法研究[D]. 哈尔滨: 哈尔滨工程大学,2018.
    [13] TCHIOTSOP D, SAHA TCHINDA B, TCHINDA B, et al. Edge detection of intestinal parasites in stool microscopic images using multi-scale wavelet transform[J]. Signal, Image and Video Processing, 2015, 9(1): 121-134.
    [14] REIN S, REISSLEIN M. Scalable line-based wavelet image coding in wireless sensor networks[J]. Journal of Visual Communication and Image Representation, 2016, 40: 418-431. doi: 10.1016/j.jvcir.2016.07.006
  • 加载中
图(11)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  186
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-16
  • 修回日期:  2021-11-03
  • 网络出版日期:  2024-04-16
  • 刊出日期:  2021-11-18

目录

    /

    返回文章
    返回