• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

数字孪生在高速列车生命周期中的应用与挑战

丁国富 何旭 张海柱 黎荣 王帅虎

丁国富, 何旭, 张海柱, 黎荣, 王帅虎. 数字孪生在高速列车生命周期中的应用与挑战[J]. 西南交通大学学报, 2023, 58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573
引用本文: 丁国富, 何旭, 张海柱, 黎荣, 王帅虎. 数字孪生在高速列车生命周期中的应用与挑战[J]. 西南交通大学学报, 2023, 58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573
DING Guofu, HE Xu, ZHANG Haizhu, LI Rong, WANG Shuaihu. Application and Challenges of Digital Twin in Life Cycle of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573
Citation: DING Guofu, HE Xu, ZHANG Haizhu, LI Rong, WANG Shuaihu. Application and Challenges of Digital Twin in Life Cycle of High-Speed Trains[J]. Journal of Southwest Jiaotong University, 2023, 58(1): 58-73. doi: 10.3969/j.issn.0258-2724.20210573

数字孪生在高速列车生命周期中的应用与挑战

doi: 10.3969/j.issn.0258-2724.20210573
基金项目: 国家重点研发计划(2020YFB1708000)
详细信息
    作者简介:

    丁国富(1972—),男,教授,研究方向为数字化设计与制造,E-mail:dingguofu@swjtu.edu.cn

  • 中图分类号: U238

Application and Challenges of Digital Twin in Life Cycle of High-Speed Trains

  • 摘要:

    数字孪生(DT)是推动轨道交通装备领域数字化、智能化的关键技术之一,但其相关研究仍处于起步阶段. 围绕高速列车生命周期研发现状,系统剖析传统高速列车研发数字化转型过程中的设计闭环难、高保真度、高精度模型缺乏、信息物理数据交互融合难等问题,结合产业发展趋势归纳提出高速列车生命周期发展新需求;在此基础上提出数字孪生高速列车技术框架,并对高速列车生命周期数字孪生模型构建和功能服务两个方面进行深入探讨,指出数字孪生高速列车所面临的关键技术问题与挑战. 通过展示前期在轨道车辆关键部件服役能力劣化方面的探索应用,以期为未来高速列车全生命周期数字化的深入研究和实践提供参考.

     

  • 图 1  高速列车现有研发流程

    Figure 1.  Existing development process of high-speed train

    图 2  数字孪生概念

    Figure 2.  Concept of digital twin

    图 3  高速列车数字孪生模型构建框架

    Figure 3.  Framework for constructing digital twin model of high-speed train

    图 4  数字孪生高速列车功能服务架构

    Figure 4.  Architecture of high-speed train digital twin function service

    图 5  高速列车研发流程“V”模型

    Figure 5.  V-model of high-speed train development process

    图 6  高速列车数字样机构建

    Figure 6.  Construction of high-speed train digital prototype

    图 7  高速列车数字孪生模型构建

    Figure 7.  Construction of high-speed train digital twin model

    图 8  数字孪生城轨车辆关键部件全生命周期能力劣化仿真模型及服役评估模型构建

    Figure 8.  Construction of simulation model and service evaluation model for the degradation of the capability of the key components of the digital twin urban rail vehicle life cycle

    图 9  基于数字孪生的城轨车辆关键部件服役能力三维数字可视化系统

    Figure 9.  3D digital visualization system based on the service capability of key components of digital twin urban rail vehicles

  • [1] 缪炳荣,张卫华,池茂儒,等. 下一代高速列车关键技术特征分析及展望[J]. 铁道学报,2019,41(3): 58-70.

    MIAO Bingrong, ZHANG Weihua, CHI Maoru, et al. Analysis and prospects of key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70.
    [2] 朱海燕,曾庆涛,王宇豪,等. 高速列车动力学性能研究进展[J]. 交通运输工程学报,2021,21(3): 57-92.

    ZHU Haiyan, ZENG Qingtao, WANG Yuhao, et al. Research progress on dynamics performance of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 57-92.
    [3] 石怀龙,郭金莹,王勇. 变轨距高速列车的动力学[J]. 机械工程学报,2020,56(20): 98-105. doi: 10.3901/JME.2020.20.098

    SHI Huailong, GUO Jinying, WANG Yong. Dynamic performance of high-speed gauge-changeable railway vehicle[J]. Journal of Mechanical Engineering, 2020, 56(20): 98-105. doi: 10.3901/JME.2020.20.098
    [4] ZHANG W H, SHEN Z Y, ZENG J. Study on dynamics of coupled systems in high-speed trains[J]. Vehicle System Dynamics, 2013, 51(7): 966-1016. doi: 10.1080/00423114.2013.798421
    [5] 王曦,侯宇,孙守光,等. 高速列车轴承可靠性评估关键力学参量研究进展[J]. 力学学报,2021,53(1): 19-34.

    WANG Xi, HOU Yu, SUN Shouguang, et al. Advances in key mechanical parameters for reliability assessment of high-speed train bearings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 19-34.
    [6] CHI Z X, CHEN R R, HUANG S M, et al. Multi-state system modeling and reliability assessment for groups of high-speed train wheels[J]. Reliability Engineering and System Safety, 2020, 202: 107026.1-107026.13.
    [7] LU Y H, ZHENG H Y, ZENG J, et al. Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test[J]. Reliability Engineering and System Safety, 2019, 188: 221-232.
    [8] 孙强,张捷,肖新标,等. 低温环境下高速列车车内噪声问题及控制方案[J]. 振动测试与诊断,2018,38(6): 1217-1222,1296.

    SUN Qiang, ZHANG Jie, XIAO Xinbiao, et al. Interior noise issues and noise control measures of high-speed train in low temperature[J]. Journal of Vibration, Measurement and Diagnosis, 2018, 38(6): 1217-1222,1296.
    [9] TAN X M, WANG T T, QIAN B S, et al. Aerodynamic noise simulation and quadrupole noise problem of 600 km/h high-speed train[J]. IEEE Access, 2019(7): 124866-124875.
    [10] 田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学,2015,17(4): 30-41.

    TIAN Hongqi. Development of research on aerodynamics of high-speed rails in China[J]. Engineering Sciences, 2015, 17(4): 30-41.
    [11] 蔡成标. 高速铁路列车-线路-桥梁耦合振动理论及应用研究[D]. 成都: 西南交通大学, 2004.
    [12] 张卫华. 高速列车耦合大系统动力学研究[J]. 中国工程科学,2015,17(4): 42-52.

    ZHANG Weihua. Study on dynamics of coupled systems in high-speed trains[J]. Engineering Sciences, 2015, 17(4): 42-52.
    [13] 高加. 高速列车智能化生产工艺技术研究[J]. 轨道交通装备与技术,2020(6): 14-17.

    GAO Jia. Research of intelligentized manufacturing techniques for high speed train[J]. Rail Transportation Equipment and Technology, 2020(6): 14-17.
    [14] 涂天慧. 高速列车转向架自动化装配线仿真与优化研究[D]. 成都: 西南交通大学, 2019.
    [15] 杨国伟. 高速列车设计和服役关键力学问题专题序[J]. 力学学报,2021,53(1): 17-18.

    YANG Guowei. Investigation on key mechanics problems of high-speed train design and service safety[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 17-18.
    [16] 丁国富,姜杰,张海柱,等. 我国高速列车数字化研发的进展及挑战[J]. 西南交通大学学报,2016,51(2): 251-263.

    DING Guofu, JIANG Jie, ZHANG Haizhu, et al. Development and challenge of digital design of high-speed trains in China[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 251-263.
    [17] LU Y Q, LIU C, WANG K I K, et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61: 101837.1-101837.14. doi: 10.1016/j.rcim.2019.101837
    [18] BOSCHERT S, ROSEN R. Digital twin—the simulation aspect[M]//Mechatronic Futures. Cham: Springer International Publishing, 2016: 59-74.
    [19] TAO F, SUI F Y, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12): 3935-3953. doi: 10.1080/00207543.2018.1443229
    [20] 庄存波,刘检华,熊辉. 分布式自主协同制造:一种智能车间运行新模式[J]. 计算机集成制造系统,2019,25(8): 1865-1874.

    ZHUANG Cunbo, LIU Jianhua, XIONG Hui. Distributed initiative and collaborative manufacturing: new paradigm for intelligent shop-floor[J]. Computer Integrated Manufacturing Systems, 2019, 25(8): 1865-1874.
    [21] TAO F, ZHANG M. Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing[J]. IEEE Access, 2017(5): 20418-20427.
    [22] 刘蔚然,陶飞,程江峰,等. 数字孪生卫星:概念、关键技术及应用[J]. 计算机集成制造系统,2020,26(3): 565-588.

    LIU Weiran, TAO Fei, CHENG Jiangfeng, et al. Digital twin satellite: concept, key technologies and applications[J]. Computer Integrated Manufacturing Systems, 2020, 26(3): 565-588.
    [23] 刘亚东,陈思,丛子涵,等. 电力装备行业数字孪生关键技术与应用展望[J]. 高电压技术,2021,47(5): 1539-1554.

    LIU Yadong, CHEN Si, CONG Zihan, et al. Key technology and application prospect of digital twin in power equipment industry[J]. High Voltage Engineering, 2021, 47(5): 1539-1554.
    [24] 王成山,董博,于浩,等. 智慧城市综合能源系统数字孪生技术及应用[J]. 中国电机工程学报,2021,41(5): 1597-1608.

    WANG Chengshan, DONG Bo, YU Hao, et al. Digital twin technology and its application in the integrated energy system of smart city[J]. Proceedings of the CSEE, 2021, 41(5): 1597-1608.
    [25] 李福兴,李璐爔,彭友. 基于数字孪生的船舶预测性维护[J]. 船舶工程,2020,42(增1): 117-120,396.

    LI Fuxing, LI Luxi, PENG You. Ship predictive maintenance based on digital twins[J]. Ship Engineering, 2020, 42(S1): 117-120,396.
    [26] 陈岳飞,肖珍芳,方向. 数字孪生技术及其在石油化工行业的应用[J]. 天然气化工,2021,46(2): 25-30.

    CHEN Yuefei, XIAO Zhenfang, FANG Xiang. Digital twin technology and its application in petrochemical industry[J]. Natural Gas Chemical Industry, 2021, 46(2): 25-30.
    [27] 樊孟杰,江海凡,丁国富,等. 基于数字孪生的地铁列车性能评估系统[J]. 计算机集成制造系统,2022,28(8): 2318-2328.

    FAN Mengjie, JIANG Haifan, DING Guofu, et al. Digital twin-based performsnce evaluation system for subway train[J]. Computer Integrated Manufacturing Systems, 2022, 28(8): 2318-2328.
    [28] 王运达,张钢,于泓,等. 基于数字孪生的城轨供电系统高保真建模方法[J]. 高电压技术,2021,47(5): 1576-1583.

    WANG Yunda, ZHANG Gang, YU Hong, et al. High fidelity modeling method of urban rail power supply system based on digital twin[J]. High Voltage Engineering, 2021, 47(5): 1576-1583.
    [29] WANG Y R, REN W Z, LI Y, et al. Complex product manufacturing and operation and maintenance integration based on digital twin[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(1/2): 361-381.
    [30] 曾庆臻. 地铁转向架配置模型构建及求解[D]. 成都: 西南交通大学, 2018.
    [31] 丁叁叁,陈大伟,刘加利. 中国高速列车研发与展望[J]. 力学学报,2021,53(1): 35-50.

    DING Sansan, CHEN Dawei, LIU Jiali. Research, development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35-50.
    [32] 陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1): 1-18.

    TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18.
    [33] 孟松鹤,叶雨玫,杨强,等. 数字孪生及其在航空航天中的应用[J]. 航空学报,2020,41(9): 023615.1-023615.12.

    MENG Songhe, YE Yumei, YANG Qiang, et al. Digital twin and its aerospace applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023615.1-023615.12.
    [34] 陶飞,张萌,程江峰,等. 数字孪生车间: 一种未来车间运行新模式[J]. 计算机集成制造系统,2017,23(1): 1-9.

    TAO Fei, ZHANG Meng, CHENG Jiangfeng, et al. Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9.
    [35] 江海凡,丁国富,张剑. 数字孪生车间演化机理及运行机制[J]. 中国机械工程,2020,31(7): 824-832,841.

    JIANG Haifan, DING Guofu, ZHANG Jian. Evolution and operation mechanism of digital twin shopfloors[J]. China Mechanical Engineering, 2020, 31(7): 824-832,841.
    [36] 贾利民,秦勇,李平. 新一代轨道智能运输系统总体框架与关键技术[J]. 中国铁路,2015(4): 14-19,60.

    JIA Limin, QIN Yong, LI Ping. The overall framework and key technologies of the new-generation rail intelligent transportation system[J]. Chinese Railway, 2015(4): 14-19,60.
    [37] 缪炳荣,张卫华,刘建新,等. 工业4.0下智能铁路前沿技术问题综述[J]. 交通运输工程学报,2021,21(1): 115-131.

    MIAO Bingrong, ZHANG Weihua, LIU Jianxin, et al. Review on frontier technical issues of intelligent railways under Industry 4.0[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 115-131.
    [38] 王军. 面向PHM的高速列车谱系化产品技术平台开发和实践[J]. 中国铁道科学,2021,42(1): 80-86.

    WANG Jun. Development and practice of PHM oriented high-speed train pedigree product technology platform[J]. China Railway Science, 2021, 42(1): 80-86.
    [39] GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[J]. Transdisciplinary Perspectives on Complex Systems, 2017(8): 85-113.
    [40] TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798.1-154798.15.
    [41] GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and US air force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Honolulu: AIAA, 2012: 1-14.
    [42] 陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1): 1-18.

    TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
    [43] PANETTA K. Gartner top 10 strategic technology trends for 2019[EB/OL]. (2018-10-15)[2021-05-01]. https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019.
    [44] QI Q L, TAO F, HU T L, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021, 58: 3-21. doi: 10.1016/j.jmsy.2019.10.001
    [45] 陶飞,马昕,胡天亮,等. 数字孪生标准体系[J]. 计算机集成制造系统,2019,25(10): 2405-2418.

    TAO Fei, MA Xin, HU Tianliang, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405-2418.
    [46] 陶飞,程颖,程江峰,等. 数字孪生车间信息物理融合理论与技术[J]. 计算机集成制造系统,2017,23(8): 1603-1611.

    TAO Fei, CHENG Ying, CHENG Jiangfeng, et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems, 2017, 23(8): 1603-1611.
    [47] TAO F, CHENG J F, QI Q L, et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9/10/11/12): 3563-3576.
    [48] Technical Operations International Council on Systems Engineering (INCOSE). Systems engineering vision 2020[R]. [S.l.]: INCOSE, 2007.
    [49] 许红静. 复杂产品数字样机集成分析建模方法研究[D]. 天津: 天津大学, 2007.
    [50] 杨帆,吴涛,廖瑞金,等. 数字孪生在电力装备领域中的应用与实现方法[J]. 高电压技术,2021,47(5): 1505-1521.

    YANG Fan, WU Tao, LIAO Ruijin, et al. Application and implementation method of digital twin in electric equipment[J]. High Voltage Engineering, 2021, 47(5): 1505-1521.
    [51] 中国铁道科学研究院集团有限公司机车车辆研究所, 中国铁道科学研究院集团有限公司标准计量研究所. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 国家标准化管理委员会, 2019.
    [52] CEN/TC 256铁路应用技术委员会. 铁路应用-轮对和转向架-转向架结构要求的规定方法: BS EN 13749: 2011 [S]. 伦敦: 欧洲标准化委员会, 2011.
    [53] 国际铁路联盟. 从铁路车辆动态性能角度对铁路车辆的测试和验收——安全性, 轨道疲劳, 运行性能: UIC 518—2009[S]. 巴黎: [出版者不详], 2009.
  • 加载中
图(9)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  568
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-20
  • 修回日期:  2022-04-06
  • 网络出版日期:  2022-10-28
  • 刊出日期:  2022-04-11

目录

    /

    返回文章
    返回